Chapter 7: Problem 21
A source at location \(x=0\) pollutes the environment. Are cases of a rare disease \(\mathcal{D}\) later observed at positions \(x_{1}, \ldots, x_{n}\) linked to the source? Cases of another rare disease \(\mathcal{D}^{\prime}\) known to be unrelated to the pollutant but with the same susceptible population as \(\mathcal{D}\) are observed at \(x_{1}^{\prime}, \ldots, x_{m}^{\prime} .\) If the probabilities of contracting \(\mathcal{D}\) and \(\mathcal{D}^{\prime}\) are respectively \(\psi(x)\) and \(\psi^{\prime}\), and the population of susceptible individuals has density \(\lambda(x)\), show that the probability of \(\mathcal{D}\) at \(x\), given that \(\mathcal{D}\) or \(\mathcal{D}^{\prime}\) occurs there, is $$ \pi(x)=\frac{\psi(x) \lambda(x)}{\psi(x) \lambda(x)+\psi^{\prime} \lambda(x)} $$ Deduce that the probability of the observed configuration of diseased persons, conditional on their positions, is $$ \prod_{j=1}^{n} \pi\left(x_{j}\right) \prod_{i=1}^{m}\left\\{1-\pi\left(x_{i}^{\prime}\right)\right\\} $$ The null hypothesis that \(\mathcal{D}\) is unrelated to the pollutant asserts that \(\psi(x)\) is independent of \(x\). Show that in this case the unknown parameters may be eliminated by conditioning on having observed \(n\) cases of \(\mathcal{D}\) out of a total \(n+m\) cases. Deduce that the null probability of the observed pattern is \(\left({ }_{n}^{n+m}\right)^{-1}\). If \(T\) is a statistic designed to detect decline of \(\psi(x)\) with \(x\), explain how permutation of case labels \(\mathcal{D}, \mathcal{D}^{\prime}\) may be used to obtain a significance level \(p_{\text {obs }}\). Such a test is typically only conducted after a suspicious pattern of cases of \(\mathcal{D}\) has been observed. How will this influence \(p_{\text {obs }}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.