Chapter 3: Problem 8
Let \(R_{1}, R_{2}\) be independent binomial random variables with probabilities \(\pi_{1}, \pi_{2}\) and denominators \(m_{1}, m_{2}\), and let \(P_{i}=R_{i} / m_{i} .\) It is desired to test if \(\pi_{1}=\pi_{2}\). Let \(\widehat{\pi}=\left(m_{1} P_{1}+m_{2} P_{2}\right) /\left(m_{1}+m_{2}\right) .\) Show that when \(\pi_{1}=\pi_{2}\), the statistic $$ Z=\frac{P_{1}-P_{2}}{\sqrt{\widehat{\pi}(1-\hat{\pi})\left(1 / m_{1}+1 / m_{2}\right)}} \stackrel{D}{\longrightarrow} N(0,1) $$ when \(m_{1}, m_{2} \rightarrow \infty\) in such a way that \(m_{1} / m_{2} \rightarrow \xi\) for \(0<\xi<1\). Now consider a \(2 \times 2\) table formed using two independent binomial variables and having entries \(R_{i}, S_{i}\) where \(R_{i}+S_{i}=m_{i}, R_{i} / m_{i}=P_{i}\), for \(i=1,2\). Show that if \(\pi_{1}=\pi_{2}\) and \(m_{1}, m_{2} \rightarrow \infty\), then $$ X^{2}=\left(n_{1}+n_{2}\right)\left(R_{1} S_{2}-R_{2} S_{1}\right)^{2} /\left\\{n_{1} n_{2}\left(R_{1}+R_{2}\right)\left(S_{1}+S_{2}\right)\right\\} \stackrel{D}{\longrightarrow} \chi_{1}^{2} $$ Two batches of trees were planted in a park: 250 were obtained from nursery \(A\) and 250 from nursery \(B\). Subsequently 41 and 64 trees from the two groups die. Do trees from the two nurseries have the same survival probabilities? Are the assumptions you make reasonable?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.