Chapter 9: Problem 11
Let \(F\) be a distribution on \(\mathbb{R}^{n}\) such that \(\operatorname{supp}(F)=\\{0\\}\). a. There exist \(N \in \mathbb{N}, C>0\) such that for all \(\phi \in C_{e}^{\infty}\). $$ |\langle F, \phi\rangle| \leq C \sum_{|a| \leq N} \sup _{|x| \leq 1}\left|\partial^{\alpha} \phi(x)\right| $$ b. Fix \(\psi \in C_{e}^{\infty}\) with \(\psi(x)=1\) for \(|x| \leq 1\) and \(\psi(x)=0\) for \(|x| \geq 2\). If \(\phi \in C_{e}^{\infty}\), let \(\phi_{k}(x)=\phi(x)[1-\psi(k x)]\). If \(\partial^{\alpha} \phi(0)=0\) for \(|\alpha| \leq N\), then \(\partial^{\alpha} \phi_{k} \rightarrow \partial^{\alpha} \phi\) uniformly as \(k \rightarrow \infty\) for \(|\alpha| \leq N\). (Hint: By 'Taylor's theorem. \(\left|\partial^{\alpha} \phi(x)\right| \leq C|x|^{N+1-|\alpha|}\) for \(\left.|\alpha| \leq N_{.}\right)\) c. If \(\phi \in C_{c}^{\infty}\) and \(\partial^{\alpha} \phi(0)=0\) for \(|\alpha| \leq N\), then \(\langle F, \phi\rangle=0\). d. There exist constants \(c_{\alpha}(|\alpha| \leq N)\) such that \(F=\sum_{|a| \leq N} c_{\alpha} \partial^{\alpha} \delta\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.