Chapter 8: Problem 17
Given \(a>0\), let \(f(x)=e^{-2 \pi x} x^{a-1}\) for \(x>0\) and \(f(x)=0\) for \(x \leq 0\). a. \(f \in L^{1}\), and \(f \in L^{2}\) if \(a>\frac{1}{2}\). b. \(\hat{f}(\xi)=\Gamma(a)[(2 \pi)(1+i \xi)]^{-a}\). (Here we are using the branch of \(z^{a}\) in the right half plane that is positive when \(z\) is positive. Cauchy's theorem may be used to justify the complex substitution \(y=(1+i \xi) x\) in the integral defining \(\widehat{f_{0}}\) ) c. If \(a, b>\frac{1}{2}\) then $$ \int_{-\infty}^{\infty}(1-i x)^{-a}(1+i x)^{-b} d x=\frac{2^{2-a-b} \pi \Gamma(a+b-1)}{\Gamma(a) \Gamma(b)} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.