Chapter 4: Problem 10
A topological space \(X\) is called disconnected if there exist nonempty open sets \(U, V\) such that \(U \cap V=\varnothing\) and \(U \cup V=X\); otherwise \(X\) is connected. When we speak of connected or disconnected subsets of \(X\), we refer to the relative topology on them. a. \(X\) is connected iff \(\varnothing\) and \(X\) are the only subsets of \(X\) that are both open and closed. b. If \(\left\\{E_{\alpha}\right\\}_{\alpha \in A}\) is a collection of connected subsets of \(X\) such that \(\bigcap_{\alpha \in A} E_{\alpha} \neq\) \(\varnothing\), then \(\bigcup_{\alpha \in A} E_{\alpha}\) is connected. c. If \(A \subset X\) is connected, then \(\bar{A}\) is connected. d. Every point \(x \in X\) is contained in a unique maximal connected subset of \(X\), and this subset is closed. (It is called the connected component of \(x\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.