Define \(G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\) by \(G\left(r, \phi_{1},
\ldots, \phi_{n-2}, \theta\right)=\left(x_{1}, \ldots, x_{n}\right)\) where
\(x_{1}=r \cos \phi_{1}, \quad x_{2}=r \sin \phi_{1} \cos \phi_{2}, \quad
x_{3}=r \sin \phi_{1} \sin \phi_{2} \cos \phi_{3}, \ldots\),
\(x_{n-1}=r \sin \phi_{1} \cdots \sin \phi_{n-2} \cos \theta, \quad x_{n}=r
\sin \phi_{1} \cdots \sin \phi_{n-2} \sin \theta .\)
a. \(G\) maps \(\mathbb{R}^{n}\) onto \(\mathbb{R}^{n}\), and \(\left|G\left(r,
\phi_{1}, \ldots, \phi_{n-2,} \theta\right)\right|=|r|\).
b. \(\operatorname{det} D_{\left(r, \phi_{1}, \ldots, \phi_{n-2},
\theta\right)} G=r^{n-1} \sin ^{n-2} \phi_{1} \sin ^{n-3} \phi_{2} \cdots \sin
\phi_{n-2}\).
c. Let \(\Omega=(0, \infty) \times(0, \pi)^{n-2} \times(0,2 \pi)\). Then \(G \mid
\Omega\) is a diffeomorphism and \(m\left(\mathbb{R}^{n} \backslash
G(\Omega)\right)=0\).
d. Let \(F\left(\phi_{1}, \ldots, \phi_{n-2}, \theta\right)=G\left(1, \phi_{1},
\ldots, \phi_{n-2}, \theta\right)\) and \(\Omega^{\prime}=(0, \pi)^{n-2} \times\)
\((0,2 \pi)\). Then \(\left(F \mid \Omega^{\prime}\right)^{-1}\) defines a
coordinate system on \(S^{n-1}\) except on a \(\sigma\)-null set, and the measure
\(\sigma\) is given in these coordinates by
$$
d \sigma\left(\phi_{1}, \ldots \phi_{n-2}, \theta\right)=\sin ^{n-2} \phi_{1}
\sin ^{n-3} \phi_{2} \cdots \sin \phi_{n-2} d \phi_{1} \cdots d \phi_{n-2} d
\theta
$$