Chapter 2: Problem 11
Suppose that \(f\) is a function on \(\mathbb{R} \times \mathbb{R}^{k}\) such that \(f(x, \cdot)\) is Borel measurable for each \(x \in \mathbb{R}\) and \(f(\cdot, y)\) is continuous for each \(y \in \mathbb{R}^{k}\). For \(n \in \mathbb{N}\), define \(f_{n}\) as follows. For \(i \in \mathbb{Z}\) let \(a_{i}=i / n\), and for \(a_{i} \leq x \leq a_{i+1}\) let $$ f_{n}(x, y)=\frac{f\left(a_{i+1}, y\right)\left(x-a_{i}\right)-f\left(a_{i}, y\right)\left(x-a_{i+1}\right)}{a_{i+1}-a_{i}} $$ Then \(f_{n}\) is Borel measurable on \(\mathbb{R} \times \mathbb{R}^{k}\) and \(f_{n} \rightarrow f\) pointwise; hence \(f\) is Borel measurable on \(\mathbb{R} \times \mathbb{R}^{k}\). Conclude by induction that every function on \(\mathbb{R}^{n}\) that is continuous in each variable separately is Borel measurable.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.