Chapter 1: Problem 24
Let \(\mu\) be a finite measure on \((X, \mathcal{M})\), and let \(\mu^{*}\) be the outer measure induced by \(\mu\). Suppose that \(E \subset X\) satisfies \(\mu^{*}(E)=\mu^{*}(X)\) (but not that \(E \in \mathcal{M}\) ). a. If \(A, B \in \mathcal{M}\) and \(A \cap E=B \cap E\), then \(\mu(A)=\mu(B)\). b. Let \(\mathcal{M}_{E}=\\{A \cap E: A \in \mathcal{M}\\}\), and define the function \(\nu\) on \(\mathcal{M}_{E}\) defined by \(\nu(A \cap E)=\mu(A)\) (which makes sense by (a)). Then \(\mathcal{M}_{E}\) is a \(\sigma\)-algebra on \(E\) and \(\nu\) is a measure on \(\mathrm{M}_{E}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.