Chapter 1: Problem 1
A family of sets \(\mathcal{R} \subset \mathcal{P}(X)\) is called a ring if it is closed under finite unions and differences (i.e., if \(E_{1}, \ldots, E_{n} \in \mathcal{R}\), then \(\bigcup_{1}^{n} E_{j} \in \mathcal{R}\), and if \(E, F \in \mathcal{R}\), then \(E \backslash F \in \mathcal{R}\) ). A ring that is closed under countable unions is called a \(\sigma\)-ring. a. Rings (resp. \(\sigma\)-rings) are closed under finite (resp. countable) intersections. b. If \(\mathcal{R}\) is a ring (resp. \(\sigma\)-ring), then \(\mathcal{R}\) is an algebra (resp. \(\sigma\)-algebra) iff \(X \in \mathcal{R}\). c. If \(\mathcal{R}\) is a \(\sigma\)-ring, then \(\left\\{E \subset X: E \in \mathcal{R}\right.\) or \(\left.E^{c} \in \mathcal{R}\right\\}\) is a \(\sigma\)-algebra. d. If \(\mathcal{R}\) is a \(\sigma\)-ring, then \(\\{E \subset X: E \cap F \in \mathcal{R}\) for all \(F \in \mathcal{R}\\}\) is a \(\sigma\)-algebra.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.