Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let\({{\rm{\alpha }}_{\rm{1}}}{\rm{ > 0,}}{{\rm{\alpha }}_{\rm{2}}}{\rm{ > 0,}}\)with\({{\rm{\alpha }}_{\rm{1}}}{\rm{ + }}{{\rm{\alpha }}_{\rm{2}}}{\rm{ = 0}}\)

\({\rm{P}}\left( {{\rm{ - }}{{\rm{z}}_{{\alpha _{\rm{1}}}}}{\rm{ < }}\frac{{{\rm{\bar X - m}}}}{{{\rm{s/}}\sqrt {\rm{n}} }}{\rm{ < }}{{\rm{z}}_{{\alpha _{\rm{2}}}}}} \right){\rm{ = 1 - }}\alpha \)

a. Use this equation to derive a more general expression for a \({\rm{100(1 - \alpha )\% }}\)CI for \({\rm{\mu }}\)of which the interval (7.5) is a special case.

b. Let \({\rm{\alpha = 0}}{\rm{.5}}\)and \({{\rm{\alpha }}_{\rm{1}}}{\rm{ = \alpha /4,}}\)\({{\rm{\alpha }}_{\rm{2}}}{\rm{ = 3\alpha /4}}{\rm{.}}\)Does this result in a narrower or wider interval than the interval (7.5)?

Short Answer

Expert verified

(a) When the value of \({{\rm{\sigma }}^{\rm{2}}}\)is known \(\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right){\rm{;}}\)

(b) The required result is wider interval.

Step by step solution

01

Concept Introduction

"A (p, 1) tolerance interval (TI) based on a sample is designed in such a way that it includes at least a proportion p of the sampled population with confidence 1; such a TI is sometimes referred to as p-content (1) coverage TI."

02

Finding part (a)

When a normal population is given,

(a)

From

\({\rm{P}}\left( {{\rm{ - }}{{\rm{z}}_{{{\rm{a}}_{\rm{1}}}}}{\rm{ < }}\frac{{{\rm{\bar X - m}}}}{{{\rm{s/}}\sqrt {\rm{n}} }}{\rm{ < }}{{\rm{z}}_{{{\rm{a}}_{\rm{2}}}}}} \right){\rm{ = 1 - a}}\)

By isolating \({\rm{\mu }}\)as follows, the more general expression for \({\rm{100(1 - \alpha )\% }}\)confidence interval for \({\rm{\mu }}\)can be produced.

\(\begin{array}{c} - {z_{{\alpha _1}}} < \frac{{\bar X - \mu }}{{\sigma /\sqrt n }} < {z_{{\alpha _2}}}\\ - {z_{{\alpha _1}}}\frac{\sigma }{{\sqrt n }} < \bar X - \mu < {z_{{\alpha _2}}}\frac{\sigma }{{\sqrt n }}\\\bar X - {z_{{\alpha _2}}}\frac{\sigma }{{\sqrt n }} < \mu < \bar X + {z_{{\alpha _1}}}\frac{\sigma }{{\sqrt n }}\end{array}\)

As a result, when a normal population is provided,

A more generic confidence interval of \({\rm{100(1 - \alpha )\% }}\)

for the mean is given by:

\(\left( {{\rm{\bar x - }}{{\rm{z}}_{{{\rm{\alpha }}_{\rm{2}}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{{\rm{\alpha }}_{\rm{1}}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\)

Thus , when the value of \({{\rm{\sigma }}^{\rm{2}}}\)is known.

03

  Does this result in a narrower or wider interval

(b)

When given a normal population,

A \({\rm{100(1 - \alpha )\% }}\)confidence interval

for the mean is given by

\(\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\)

When the value of \({{\rm{\sigma }}^{\rm{2}}}\)is known.

The \({\rm{100(1 - \alpha )\% = 95\% }}\)confidence interval is

\(\begin{array}{l}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{\bar x - 1}}{\rm{.96 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + 1}}{\rm{.96 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\end{array}\)

Where,

\(\begin{array}{l}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.05/2}}}}\\{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{1}}{\rm{.96}}\end{array}\)

(1): this is obtained from

\({\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}} \right){\rm{ = 0}}{\rm{.025}}\)

And from the appendix's normal probability table A software can also be used to calculate the probability.

The length of such an interval is its width.

\({\rm{L = \bar x + 1}}{\rm{.96 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ - \bar x + 1}}{\rm{.96 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ = 3}}{\rm{.92 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}\)

The more general \({\rm{100(1 - \alpha )\% = 95\% }}\)confidence interval for \({\rm{\mu }}\)is,

\(\begin{array}{c}\left( {{\rm{\bar x - }}{{\rm{z}}_{{{\rm{\alpha }}_{\rm{2}}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{{\rm{\alpha }}_{\rm{1}}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{\bar x - }}{{\rm{z}}_{\scriptstyle{\rm{3}}\atop\scriptstyle{\rm{ \times 0}}{\rm{.05/4}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{0}}{\rm{.05/4}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{0}}{\rm{.0375}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{0}}{\rm{.0125}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{\bar x - 1}}{\rm{.78 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + 2}}{\rm{.24 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\end{array}\)

Where,

\(\begin{array}{l}{{\rm{z}}_{{\rm{0}}{\rm{.0375}}}}\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{1}}{\rm{.78}}\\{{\rm{z}}_{{\rm{0}}{\rm{.0125}}}}\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{2}}{\rm{.24}}\end{array}\)

(1) : this is obtained from

\(\begin{array}{l}{\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.0375}}}}} \right){\rm{ = 0}}{\rm{.0375;}}\\{\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.0125}}}}} \right){\rm{ = 0}}{\rm{.0125;}}\end{array}\)

And from the appendix's normal probability table A software can also be used to calculate the probability.

The length of such an interval is its width

\({L^\prime }{\rm{ = \bar x + 2}}{\rm{.24 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ - \bar x + 1}}{\rm{.78 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ = (2}}{\rm{.24 + 1}}{\rm{.78) \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ = 4}}{\rm{.02 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}\)

Obviously,

\({L^\prime }{\rm{ = 4}}{\rm{.02 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ > 3}}{\rm{.92 \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{ = L}}\)

Conclusion: A broader interval is obtained using the more generic equation for a \({\rm{95\% }}\) confidence interval.

The two graphs below show the visual difference.

The 95% confidence interval is as follows:

The 95 percent general confidence interval is as follows:

Thus, the required result is wider interval.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A random sample of n=\({\rm{15}}\)heat pumps of a certain type yielded the following observations on lifetime (in years):

\(\begin{array}{*{20}{l}}{{\rm{2}}{\rm{.0 1}}{\rm{.3 6}}{\rm{.0 1}}{\rm{.9 5}}{\rm{.1 }}{\rm{.4 1}}{\rm{.0 5}}{\rm{.3}}}\\{{\rm{15}}{\rm{.7 }}{\rm{.7 4}}{\rm{.8 }}{\rm{.9 12}}{\rm{.2 5}}{\rm{.3 }}{\rm{.6}}}\end{array}\)

a. Assume that the lifetime distribution is exponential and use an argument parallel to that to obtain a \({\rm{95\% }}\) CI for expected (true average) lifetime.

b. How should the interval of part (a) be altered to achieve a confidence level of \({\rm{99\% }}\)?

c. What is a \({\rm{95\% }}\)CI for the standard deviation of the lifetime distribution? (Hint: What is the standard deviation of an exponential random variable?)

TV advertising agencies face increasing challenges in reaching audience members because viewing TV programs via digital streaming is gaining in popularity. The Harris poll reported on November 13, 2012, that 53% of 2343 American adults surveyed said they have watched digitally streamed TV programming on some type of device.

a. Calculate and interpret a confidence interval at the 99% confidence level for the proportion of all adult Americans who watched streamed programming up to that point in time.

b. What sample size would be required for the width of a 99% CI to be at most .05 irrespective of the value of p ห†?

A normal probability plot of the n=\({\rm{26}}\) observations on escape time shows a substantial linear pattern; the sample mean and sample standard deviation are \({\rm{370}}{\rm{.69 and 24}}{\rm{.36}}\), respectively.

a. Calculate an upper confidence bound for population mean escape time using a confidence level of \({\rm{95\% }}\)

b. Calculate an upper prediction bound for the escape time of a single additional worker using a prediction level of \({\rm{95\% }}\). How does this bound compare with the confidence bound of part (a)?

c. Suppose that two additional workers will be chosen to participate in the simulated escape exercise. Denote their escape times by \({\rm{X27 and X28}}\), and let X new denote the average of these two values. Modify the formula for a PI for a single x value to obtain a PI for X new, and calculate a 95% two-sided interval based on the given escape data.

Aphid infestation of fruit trees can be controlled either by spraying with pesticide or by inundation with ladybugs. In a particular area, four different groves of fruit trees are selected for experimentation. The first three groves are sprayed with pesticides 1, 2, and 3, respectively, and the fourth is treated with ladybugs, with the following results on yield:

Treatment ni = Number of Trees (Bushels/Tree) si

1 100 10.5 1.5

2 90 10.0 1.3

3 100 10.1 1.8

4 120 10.7 1.6

Let ยตi= the true average yield (bushels/tree) after receiving the ith treatment. Then

\({\bf{\theta = }}\frac{{\bf{1}}}{{\bf{3}}}{\bf{(}}{{\bf{\mu }}_{\bf{1}}}{\bf{ + }}{{\bf{\mu }}_{\bf{2}}}{\bf{ + }}{{\bf{\mu }}_{\bf{3}}}{\bf{) - }}{{\bf{\mu }}_{\bf{4}}}\)

measures the difference in true average yields between treatment with pesticides and treatment with ladybugs. When n1, n2, n3, and n4 are all large, the estimator \(\widehat {\bf{\theta }}\) obtained by replacing each \({{\bf{\mu }}_{\bf{i}}}\)by Xiis approximately normal. Use this to derive a large-sample 100(1 -ฮฑ)% CI for \({\bf{\theta }}\), and compute the 95% interval for the given

data.

The U.S. Army commissioned a study to assess how deeply a bullet penetrates ceramic body armor. In the standard test, a cylindrical clay model is layered under the armor vest. A projectile is then fired, causing an indentation in the clay. The deepest impression in the clay is measured as an indication of survivability of someone wearing the armor. Here is data from one testing organization under particular experimental conditions; measurements (in mm) were made using a manually controlled digital caliper:

\(\begin{array}{l}{\rm{22}}{\rm{.4 23}}{\rm{.6 24}}{\rm{.0 24}}{\rm{.9 25}}{\rm{.5 25}}{\rm{.6 25}}{\rm{.8 26}}{\rm{.1 26}}{\rm{.4 26}}{\rm{.7 27}}{\rm{.4 27}}{\rm{.6 28}}{\rm{.3 29}}{\rm{.0}}\\{\rm{ 29}}{\rm{.1 29}}{\rm{.6 29}}{\rm{.7 29}}{\rm{.8 29}}{\rm{.9 30}}{\rm{.0 30}}{\rm{.4 30}}{\rm{.5 30}}{\rm{.7 30}}{\rm{.7 31}}{\rm{.0 31}}{\rm{.0 31}}{\rm{.4 31}}{\rm{.6 31}}{\rm{.7 31}}{\rm{.9 31}}{\rm{.9 }}\\{\rm{32}}{\rm{.0 32}}{\rm{.1 32}}{\rm{.4 32}}{\rm{.5 32}}{\rm{.5 32}}{\rm{.6 32}}{\rm{.9 33}}{\rm{.1 33}}{\rm{.3 33}}{\rm{.5 33}}{\rm{.5 33}}{\rm{.5 33}}{\rm{.5 33}}{\rm{.6 33}}{\rm{.6 33}}{\rm{.8 33}}{\rm{.9 }}\\{\rm{34}}{\rm{.1 34}}{\rm{.2 34}}{\rm{.6 34}}{\rm{.6 35}}{\rm{.0 35}}{\rm{.2 35}}{\rm{.2 35}}{\rm{.4 35}}{\rm{.4 35}}{\rm{.4 35}}{\rm{.5 35}}{\rm{.7 35}}{\rm{.8 36}}{\rm{.0 36}}{\rm{.0 36}}{\rm{.0 36}}{\rm{.1 36}}{\rm{.1 }}\\{\rm{36}}{\rm{.2 36}}{\rm{.4 36}}{\rm{.6 37}}{\rm{.0 37}}{\rm{.4 37}}{\rm{.5 37}}{\rm{.5 38}}{\rm{.0 38}}{\rm{.7 38}}{\rm{.8 39}}{\rm{.8 41}}{\rm{.0 42}}{\rm{.0 42}}{\rm{.1 44}}{\rm{.6 48}}{\rm{.3 55}}{\rm{.0}}\end{array}\)

a. Construct a box plot of the data and comment on interesting features.

b. Construct a normal probability plot. Is it plausible that impression depth is normally distributed? Is a normal distribution assumption needed in order to calculate a confidence interval or bound for the true average depth m using the foregoing data? Explain.

c. Use the accompanying Minitab output as a basis for calculating and interpreting an upper confidence bound for m with a confidence level of\({\rm{99\% }}\)

Variable Count Mean SE Mean StDev Depth\({\rm{83 33}}{\rm{.370 0}}{\rm{.578 5}}{\rm{.268}}\)

Q1 Median Q3 IQR

\({\rm{30}}{\rm{.400 33}}{\rm{.500 36}}{\rm{.000 5}}{\rm{.600}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free