Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

It is important that face masks used by fire fighters be able to withstand high temperatures because fire fighters commonly work in temperatures of 200–500°F. In a test of one type of mask, 11 of 55 masks had lenses pop out at 250°. Construct a 90% upper confidence bound for the true proportion of masks of this type whose lenses would pop out at 250°.

Short Answer

Expert verified

The upper boundary of the confidence interval is \(0.2887\).

Step by step solution

01

Step 1:Margin of error.

The margin of the error is then:

\(E = {Z_{\alpha /2}}\sqrt {\frac{{\widehat p(1 - \widehat p)}}{n}} \)

02

Step 2:The sample proportion.

Given that,

\(\begin{aligned}{\rm{Sample size}}:n &= 55\\{\rm{Confidence interval: }}c &= 90\% \end{aligned}\)

The sample proportion is the number of successes divided by the sample size:

\(\begin{aligned}p &= \frac{x}{n}\\p &= \frac{{11}}{{55}}\\ p &= 0.2\end{aligned}\)

For confidence level \(1 - \alpha = 0.90\), determine \({Z_\alpha } = {Z_{0.1}}\)using the normal probability table in the appendix ( look up \(0.10\)in the table, the z-score is then the found z-score with opposite sign):

\({Z_{\alpha /2}} = 1.645\)

03

Step 3:The upper boundary of confidence interval.

The margin of the error is then:

\(\begin{aligned}E &= {Z_{\alpha /2}}\sqrt {\frac{{\widehat p(1 - \widehat p)}}{n}} \\E &= 1.645\sqrt {\frac{{0.2(1 - 0.2)}}{{55}}} \\E \approx 0.0887\end{aligned}\)

The upper boundary of the confidence interval is then:

\(\begin{aligned} p + E &= 0.2 + 0.0887\\ p + E &= 0.2887\end{aligned}\)

Hence, The upper boundary of the confidence interval is \(0.2887\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Determine the values of the following quantities

\(\begin{array}{l}{\rm{a}}{\rm{.}}{{\rm{x}}^{\rm{2}}}{\rm{,1,15}}\\{\rm{b}}{\rm{.}}{{\rm{X}}^{\rm{3}}}{\rm{,125}}\\{\rm{c}}{\rm{.}}{{\rm{X}}^{\rm{7}}}{\rm{01,25}}\\{\rm{d}}{\rm{.}}{{\rm{X}}^{\rm{2}}}{\rm{00525}}\\{\rm{e}}{\rm{.}}{{\rm{X}}^{\rm{7}}}{\rm{9925}}\\{\rm{f}}{\rm{.}}{{\rm{X}}^{\rm{7}}}{\rm{995,25}}\end{array}\)

Each of the following is a confidence interval for \({\rm{\mu = }}\) true average (i.e., population mean) resonance frequency (Hz) for all tennis rackets of a certain type: \({\rm{(114}}{\rm{.4,115}}{\rm{.6)(114}}{\rm{.1,115}}{\rm{.9)}}\) a. What is the value of the sample mean resonance frequency? b. Both intervals were calculated from the same sample data. The confidence level for one of these intervals is \({\rm{90\% }}\) and for the other is \({\rm{99\% }}\). Which of the intervals has the \({\rm{90\% }}\) confidence level, and why?

A study of the ability of individuals to walk in a straight line reported the accompanying data on cadence (strides per second) for a sample of n =\({\rm{20}}\) randomly selected healthy men.

\({\rm{.95 }}{\rm{.85 }}{\rm{.92 }}{\rm{.95 }}{\rm{.93 }}{\rm{.86 1}}{\rm{.00 }}{\rm{.92 }}{\rm{.85 }}{\rm{.81 }}{\rm{.78 }}{\rm{.93 }}{\rm{.93 1}}{\rm{.05 }}{\rm{.93 1}}{\rm{.06 1}}{\rm{.06 }}{\rm{.96 }}{\rm{.81 }}{\rm{.96}}\)

A normal probability plot gives substantial support to the assumption that the population distribution of cadence is approximately normal. A descriptive summary of the data from Minitab follows:

Variable N Mean Median TrMean StDev SEMean cadence

\({\rm{20 0}}{\rm{.9255 0}}{\rm{.9300 0}}{\rm{.9261 0}}{\rm{.0809 0}}{\rm{.0181}}\)

Variable Min Max Q1 Q3 cadence

\({\rm{0}}{\rm{.7800 1}}{\rm{.0600 0}}{\rm{.8525 0}}{\rm{.9600}}\)

a. Calculate and interpret a \({\rm{95\% }}\) confidence interval for population mean cadence.

b.Calculate and interpret a \({\rm{95\% }}\)prediction interval for the cadence of a single individual randomly selected from this population.

c. Calculate an interval that includes at least \({\rm{99\% }}\)of the cadences in the population distribution using a confidence level of \({\rm{95\% }}\)

Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. The article “Biomechanics in Augmentation Rhinoplasty” reported that for a sample of 15 (newly deceased) adults, the mean failure strain (%) was 25.0, and the standard deviation was 3.5.

a. Assuming a normal distribution for failure strain, estimate true average strain in a way that conveys information about precision and reliability.

b. Predict the strain for a single adult in a way that conveys information about precision and reliability. How does the prediction compare to the estimate calculated in part (a)?

On the basis of extensive tests, the yield point of a particular type of mild steel-reinforcing bar is known to be normally distributed with\({\rm{\sigma = 100,}}\)The composition of bars has been slightly modified, but the modification is not believed to have affected either the normality or the value of\({\rm{\sigma }}\).

a. Assuming this to be the case, if a sample of 25 modified bars resulted in a sample average yield point of 8439 lb, compute a 90% CI for the true average yield point of the modified bar.

b. How would you modify the interval in part (a) to obtain a confidence level of 92%?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free