A study of the ability of individuals to walk in a straight line reported the accompanying data on cadence (strides per second) for a sample of n =\({\rm{20}}\) randomly selected healthy men.
\({\rm{.95 }}{\rm{.85 }}{\rm{.92 }}{\rm{.95 }}{\rm{.93 }}{\rm{.86 1}}{\rm{.00 }}{\rm{.92 }}{\rm{.85 }}{\rm{.81 }}{\rm{.78 }}{\rm{.93 }}{\rm{.93 1}}{\rm{.05 }}{\rm{.93 1}}{\rm{.06 1}}{\rm{.06 }}{\rm{.96 }}{\rm{.81 }}{\rm{.96}}\)
A normal probability plot gives substantial support to the assumption that the population distribution of cadence is approximately normal. A descriptive summary of the data from Minitab follows:
Variable N Mean Median TrMean StDev SEMean cadence
\({\rm{20 0}}{\rm{.9255 0}}{\rm{.9300 0}}{\rm{.9261 0}}{\rm{.0809 0}}{\rm{.0181}}\)
Variable Min Max Q1 Q3 cadence
\({\rm{0}}{\rm{.7800 1}}{\rm{.0600 0}}{\rm{.8525 0}}{\rm{.9600}}\)
a. Calculate and interpret a \({\rm{95\% }}\) confidence interval for population mean cadence.
b.Calculate and interpret a \({\rm{95\% }}\)prediction interval for the cadence of a single individual randomly selected from this population.
c. Calculate an interval that includes at least \({\rm{99\% }}\)of the cadences in the population distribution using a confidence level of \({\rm{95\% }}\)