Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A CI is desired for the true average stray-load loss \({\rm{\mu }}\) (watts) for a certain type of induction motor when the line current is held at \({\rm{10 amps}}\) for a speed of \({\rm{1500 rpm}}\). Assume that stray-load loss is normally distributed with \({\rm{\sigma = 3}}{\rm{.0}}\). a. Compute a \({\rm{95\% }}\) CI for \({\rm{\mu }}\) when \({\rm{n = 25}}\) and \({\rm{\bar x = 58}}{\rm{.3}}\). b. Compute a \({\rm{95\% }}\) CI for \({\rm{\mu }}\) when \({\rm{n = 100}}\) and \({\rm{\bar x = 58}}{\rm{.3}}\). c. Compute a \({\rm{99\% }}\) CI for \({\rm{\mu }}\) when \({\rm{n = 100}}\) and \({\rm{\bar x = 58}}{\rm{.3}}\). d. Compute an \({\rm{82\% }}\) CI for \({\rm{\mu }}\) when \({\rm{n = 100}}\) and \({\rm{\bar x = 58}}{\rm{.3}}\). e. How large must n be if the width of the \({\rm{99\% }}\) interval for \({\rm{\mu }}\) is to be \({\rm{1}}{\rm{.0}}\)?

Short Answer

Expert verified

(a) The value is \({\rm{(57}}{\rm{.1,59}}{\rm{.5)}}\).

(b) The value is \({\rm{(57}}{\rm{.7,58}}{\rm{.9)}}\).

(c) The value is \({\rm{(57}}{\rm{.5,59}}{\rm{.1)}}\).

(d) The value is \({\rm{(57}}{\rm{.9,58}}{\rm{.7)}}\).

(e) The n must be \({\rm{240}}\).

Step by step solution

01

Define interval

An interval is a set of numbers that includes all the real numbers between the two endpoints of the interval.

02

Explanation


(a) When a normal population is given,

\({\rm{100(1 - \alpha )\% confidence interval}}\)

the mean is calculated using,

\(\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\)

when it is known what the value\({{\rm{\sigma }}^{\rm{2}}}\)is.

For given values, the\({\rm{95\% }}\)percent confidence interval is,

\(\begin{array}{l}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{58}}{\rm{.3 - 1}}{\rm{.96 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{25}}} }}{\rm{,58}}{\rm{.3 + 1}}{\rm{.96 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{25}}} }}} \right)\\{\rm{ = (57}}{\rm{.1,59}}{\rm{.5)}}\end{array}\)

Where,

\(\begin{array}{c}{\rm{100(1 - \alpha ) = 95}}\\{\rm{\alpha = 0}}{\rm{.05}}\end{array}\)

and

\(\begin{array}{c}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.05/2}}}}\\{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{1}}{\rm{.96}}\end{array}\)

(1) : this is a result of

\({\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}} \right){\rm{ = 0}}{\rm{.025}}\)

and from the appendix's normal probability table a software can also be used to calculate the probability.

Therefore, the value is \({\rm{(57}}{\rm{.1,59}}{\rm{.5)}}\).

03

Explanation


(b) For given values, the \({\rm{95\% }}\) percent confidence interval is,

\(\begin{array}{l}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{58}}{\rm{.3 - 1}}{\rm{.96 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}{\rm{,58}}{\rm{.3 + 1}}{\rm{.96 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}} \right)\\{\rm{ = (57}}{\rm{.7,58}}{\rm{.9)}}\end{array}\)

Where,

\(\begin{array}{c}{\rm{100(1 - \alpha ) = 95}}\\{\rm{\alpha = 0}}{\rm{.05}}\end{array}\)

and

\(\begin{array}{c}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.05/2}}}}\\{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{1}}{\rm{.96}}\end{array}\)

(1) : this is a result of

\({\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.025}}}}} \right){\rm{ = 0}}{\rm{.025}}\)

and from the appendix's normal probability table a software can also be used to calculate the probability.

Therefore, the value is \({\rm{(57}}{\rm{.7,58}}{\rm{.9)}}\).

04

Explanation


(c) For given values, the \({\rm{99\% }}\) percent confidence interval is,

\(\begin{array}{l}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{58}}{\rm{.3 - 2}}{\rm{.58 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}{\rm{,58}}{\rm{.3 + 2}}{\rm{.58 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}} \right)\\{\rm{ = (57}}{\rm{.5,59}}{\rm{.1)}}\end{array}\)

Where,

\(\begin{array}{c}{\rm{100(1 - \alpha ) = 99}}\\{\rm{\alpha = 0}}{\rm{.01}}\end{array}\)

and

\(\begin{array}{c}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.01/2}}}}\\{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.005}}}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{2}}{\rm{.58}}\end{array}\)

(1) : this is a result of

\({\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.005}}}}} \right){\rm{ = 0}}{\rm{.005}}\)

and from the appendix's normal probability table a software can also be used to calculate the probability.

Therefore, the value is \({\rm{(57}}{\rm{.5,59}}{\rm{.1)}}\).

05

Explanation


(d) For given values, the \({\rm{82\% }}\) percent confidence interval is,

\(\begin{array}{l}\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\\{\rm{ = }}\left( {{\rm{58}}{\rm{.3 - 1}}{\rm{.34 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}{\rm{,58}}{\rm{.3 + 1}}{\rm{.34 \times }}\frac{{\rm{3}}}{{\sqrt {{\rm{100}}} }}} \right)\\{\rm{ = (57}}{\rm{.9,58}}{\rm{.7)}}\end{array}\)

Where,

\(\begin{array}{c}{\rm{100(1 - \alpha ) = 82}}\\{\rm{\alpha = 0}}{\rm{.18}}\end{array}\)

and

\(\begin{array}{c}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.18/2}}}}\\{\rm{ = }}{{\rm{z}}_{{\rm{0}}{\rm{.09}}}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{1}}{\rm{.34}}\end{array}\)

(1) : this is a result of

\({\rm{P}}\left( {{\rm{Z > }}{{\rm{z}}_{{\rm{0}}{\rm{.09}}}}} \right){\rm{ = 0}}{\rm{.09}}\)

and from the appendix's normal probability table a software can also be used to calculate the probability.

Therefore, the value is \({\rm{(57}}{\rm{.9,58}}{\rm{.7)}}\).

06

Explanation


(e) In order to calculate the confidence interval,

\(\left( {{\rm{\bar x - }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}{\rm{,\bar x + }}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\sqrt {\rm{n}} }}} \right)\)

having width\({\rm{w}}\), the

\({\rm{the necessarysample size n}}\)

Is

\({\rm{n = }}{\left( {{\rm{2}}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\rm{w}}}} \right)^{\rm{2}}}\)

The larger the \({\rm{n}}\), the smaller the width \({\rm{w}}\) must be.

It is given\({\rm{w = 1,}}{{\rm{z}}_{{\rm{0}}{\rm{.005}}}}{\rm{ = 2}}{\rm{.58(see(c)),n}}\)will be,

\(\begin{aligned}n &= {\left( {{\rm{2}}{{\rm{z}}_{{\rm{\alpha /2}}}}{\rm{ \times }}\frac{{\rm{\sigma }}}{{\rm{w}}}} \right)^{\rm{2}}}\\ &= {\left( {{\rm{2 \times 2}}{\rm{.58 \times }}\frac{{\rm{3}}}{{\rm{1}}}} \right)^{\rm{2}}}\\ &= 239 {\rm{.62}}\end{aligned}\)

Because an integer number is required, round it up to,

\({\rm{n = 240}}\).

Therefore, the \({\rm{n = 240}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In a sample of \({\rm{1000}}\) randomly selected consumers who had opportunities to send in a rebate claim form after purchasing a product, \({\rm{250}}\) of these people said they never did so. Reasons cited for their behaviour included too many steps in the process, amount too small, missed deadline, fear of being placed on a mailing list, lost receipt, and doubts about receiving the money. Calculate an upper confidence bound at the \({\rm{95\% }}\)confidence level for the true proportion of such consumers who never apply for a rebate. Based on this bound, is there compelling evidence that the true proportion of such consumers is smaller than \({\rm{1/3}}\)? Explain your reasoning

The amount of lateral expansion (mils) was determined for a sample of n=\({\rm{9}}\)pulsed-power gas metal arc welds used in LNG ship containment tanks. The resulting sample standard deviation was s=\({\rm{2}}{\rm{.81}}\)mils. Assuming normality, derive a \({\rm{95\% }}\)CI for s2 and for s.

presented a sample of \({\rm{n = 153}}\)observations on ultimate tensile strength, the previous section gave summary quantities and requested a large-sample confidence interval. Because the sample size is large, no assumptions about the population distribution are required for the validity of the CI.

a. Is any assumption about the tensile-strength distribution required prior to calculating a lower prediction bound for the tensile strength of the next specimen selected using the method described in this section? Explain.

b. Use a statistical software package to investigate the plausibility of a normal population distribution.

c. Calculate a lower prediction bound with a prediction level of \({\rm{95\% }}\)for the ultimate tensile strength of the next specimen selected.

The article โ€œConcrete Pressure on Formworkโ€ (Mag. of Concrete Res., 2009: 407โ€“417) gave the following observations on maximum concrete pressure (kN/m2 ):

33.2 41.8 37.3 40.2 36.7 39.1 36.2 41.8

36.0 35.2 36.7 38.9 35.8 35.2 40.1

a.Is it plausible that this sample was selected from a normal population distribution?

b. Calculate an upper confidence bound with confidence level 95% for the population standard deviation of maximum pressure.

A journal article reports that a sample of size 5 was used as a basis for calculating a 95% CI for the true average natural frequency (Hz) of delaminated beams of a certain type. The resulting interval was (229.764, 233.504). You decide that a confidence level of 99% is more appropriate than the 95% level used. What are the limits of the 99% interval? (Hint: Use the center of the interval and its width to determine \(\overline x \) and s.)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free