Chapter 2: Q89E (page 91)
Suppose identical tags are placed on both the left ear and the right ear of a fox. The fox is then let loose for a period of time. Consider the two events \({{\rm{C}}_{\rm{1}}}{\rm{ = }}\){left ear tag is lost} and \({{\rm{C}}_{\rm{2}}}{\rm{ = }}\){right ear tag is lost}. Let \({\rm{\pi = P(}}{{\rm{C}}_{\rm{1}}}{\rm{) = P(}}{{\rm{C}}_{\rm{2}}}{\rm{)}}\),and assume \({{\rm{C}}_{\rm{1}}}\)and \({{\rm{C}}_{\rm{2}}}\) are independent events. Derive an expression (involving p) for the probability that exactly one tag is lost, given that at most one is lost (“Ear Tag Loss in Red Foxes,” J. Wildlife Mgmt., \({\rm{1976: 164--167)}}{\rm{.}}\) (Hint: Draw a tree diagram in which the two initial branches refer to whether the left ear tag was lost.)
Short Answer
The expression is \({\rm{P(A}}\mid {\rm{B) = }}\frac{{{\rm{2\pi }}}}{{{\rm{1 + \pi }}}}\)