Multiplication Property: Two events A and B are independent if and only if
\(P(A \cap B) = P(A) \cdot P(B)\)
As we are asked, we need to use the proposition given above. From exercise\({\rm{13}}\), we have
\(\begin{array}{l}P\left( {{A_1} \cap {A_2}} \right) = 0.11\\P\left( {{A_1} \cap {A_3}} \right) = 0.05\\P\left( {{A_2} \cap {A_3}} \right) = 0.07\end{array}\)
as well as the probabilities of event\({{\rm{A}}_{\rm{1}}}{\rm{,}}{{\rm{A}}_{\rm{2}}}\), and \({{\rm{A}}_{\rm{3}}}\)
\(\begin{array}{c}P\left( {{A_1}} \right) \cdot P\left( {{A_2}} \right) &=& 0.22 \cdot 0.25\\ &=& 0.055\\P\left( {{A_1}} \right) \cdot P\left( {{A_3}} \right) &=& 0.22 \cdot 0.28\\ &=& 0.0616\\P\left( {{A_2}} \right) \cdot P\left( {{A_3}} \right) &=& 0.25 \cdot 0.28\\ &=& 0.07\end{array}\)