Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the following information about travellers on vacation (based partly on a recent Travelocity poll): \({\rm{40\% }}\) check work email, \({\rm{30\% }}\) use a cell phone to stay connected to work, \({\rm{25\% }}\) bring a laptop with them, \({\rm{23\% }}\) both check work email and use a cell phone to stay connected, and \({\rm{51\% }}\) neither check work email nor use a cell phone to stay connected nor bring a laptop. In addition, \({\rm{88}}\) out of every \({\rm{100}}\) who bring a laptop also check work email, and \({\rm{70}}\) out of every \({\rm{100}}\) who use a cell phone to stay connected also bring a laptop. a. What is the probability that a randomly selected traveller who checks work email also uses a cell phone to stay connected? b. What is the probability that someone who brings a laptop on vacation also uses a cell phone to stay connected? c. If the randomly selected traveller checked work email and brought a laptop, what is the probability that he/ she uses a cell phone to stay connected?

Short Answer

Expert verified

a. \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}} \right){\rm{ = 0}}{\rm{.575}}\),

b. \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{L}}}} \right){\rm{ = 0}}{\rm{.84}}\),

c. \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = 0}}{\rm{.91}}\)

Step by step solution

01

Determine denote events and given probabilities

Denote events

\(\begin{array}{l}{{\rm{A}}_{\rm{E}}}{\rm{ = \{ check work mail \} }}\\{{\rm{A}}_{\rm{C}}}{\rm{ = \{ use cell phone to stay connected to work \} ;}}\\{{\rm{A}}_{\rm{L}}}{\rm{ = \{ bring a laptop \} }}\end{array}\)

we are given the following probabilities

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}} \right)\rm &=& 0{\rm{.4}}\\{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}} \right) \rm &=& 0{\rm{.3}}\\{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}} \right) \rm &=& 0{\rm{.25}}\\{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}} \right) \rm &=& 0{\rm{.23}}\\{\rm{P}}\left( {{\rm{A}}_{\rm{E}}^{\rm{¢}}{\rm{Ç}A}_{\rm{C}}^{\rm{¢}}{\rm{Ç}A}_{\rm{L}}^{\rm{¢}}} \right)\rm &=& 0{\rm{.51}}\\{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}\mid {{\rm{A}}_{\rm{L}}}} \right)\rm &=& 0{\rm{.88}}\\{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}\mid {{\rm{A}}_{\rm{C}}}} \right)\rm &=& 0{\rm{.7}}\end{array}\)

02

Determine the value of \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}} \right)\)

(a):

We need to find the probability that a randomly selected traveler who checks work email also uses a cell phone to stay connected, which is a conditional probability of \({{\rm{A}}_{\rm{C}}}\)given that the event \({{\rm{A}}_{\rm{E}}}\)has occurred. Therefore,

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}} \right)\rm &=& \frac{{{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{E}}}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}} \right)}}\\ \rm &=& \frac{{{\rm{0}}{\rm{.23}}}}{{{\rm{0}}{\rm{.4}}}}\\ \rm &=& 0{\rm{.575}}\end{array}\)

where we used the definition of conditional probability.

Conditional probability of \({\rm{A}}\) given that the event \({\rm{B}}\) has occurred, for which \({\rm{P}}\left( {\rm{B}} \right){\rm{ > 0,}}\)is

\({\rm{P(A}}\mid {\rm{B) = }}\frac{{{\rm{P(A{Ç}B)}}}}{{{\rm{P(B)}}}}\)

for any two events \({\rm{A}}\)and\({\rm{B}}\).

03

Determine the value of \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{L}}}} \right)\)

(b):

The probability that someone who brings a laptop on vacation also uses a cell phone to stay connected is conditional probability of \({{\rm{A}}_{\rm{C}}}\)given that the event \({{\rm{A}}_{\rm{L}}}\)has occurred. We have

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{L}}}} \right)\mathop {\rm{ = }}\limits^{{\rm{(1)}}} \frac{{{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}} \right)}}\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} \frac{{{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}\mid {{\rm{A}}_{\rm{C}}}} \right){\rm{*P}}\left( {{{\rm{A}}_{\rm{C}}}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_{\rm{L}}}} \right)}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.7*0}}{\rm{.3}}}}{{{\rm{0}}{\rm{.25}}}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.21}}}}{{{\rm{0}}{\rm{.25}}}}\\{\rm{ = 0}}{\rm{.84}}\end{array}\)

(1): here we use the definition of conditional probability, (2): here we use the multiplication rule given below.

The Multiplication Rule

\({\rm{P(A{Ç}B) = P(A}}\mid {\rm{B)*P(B)}}\)

04

Determine the value of \({\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right)\)

(c):

The probability we are asked to calculate is conditional probability of \({{\rm{A}}_{\rm{C}}}\) given that the event \({{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}\) occurred. We have the following

\({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = }}\frac{{{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)}}\)

Using the proposition given below, the following is true

\({\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = P}}\left( {{{\rm{A}}_{\rm{E}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{C}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{L}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)\)

or equally

\({\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{E}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{C}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{L}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)\)

We are missing

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right)\rm &=& 1 - P\left( {{{\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right)}^{\rm{¢}}}} \right)\\ \rm &=& 1 - P\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)\\ \rm &=& 1 - 0{\rm{.51}}\\ \rm &=& 0{\rm{.49}}\end{array}\)

05

Determine the value of \({\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)\)

Now we can substitute the values

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{É}}{{\rm{A}}_{\rm{C}}}{\rm{É}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{E}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{C}}}} \right){\rm{ - P}}\left( {{{\rm{A}}_{\rm{L}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{C}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ + P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{0}}{\rm{.49 - 0}}{\rm{.4 - 0}}{\rm{.3 - 0}}{\rm{.25 + 0}}{\rm{.22 + 0}}{\rm{.23 + 0}}{\rm{.21}}\\{\rm{ = 0}}{\rm{.2}}{\rm{.}}\end{array}\)

(1): here we calculated \({\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{l}}}} \right)\)as

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = P}}\left( {{{\rm{A}}_{\rm{L}}}} \right){\rm{*P}}\left( {{{\rm{A}}_{\rm{E}}}\mid {{\rm{A}}_{\rm{L}}}} \right)\\{\rm{ = 0}}{\rm{.25*0}}{\rm{.88}}\\{\rm{ = 0}}{\rm{.22,}}\end{array}\)

where the other probabilities were calculated previously.

Proposition: For every three events \({\rm{A,B}}\)and \({\rm{C}}\)the following is true

\({\rm{P(AÉ BÉ C) = P(A) + P(B) + P(C) - P(AÇB) - P(AÇC) - P(BÇC) + P(AÇBÇC)}}\)

Finally, we have

\(\begin{array}{l}{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}\mid {{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right){\rm{ = }}\frac{{{\rm{P}}\left( {{{\rm{A}}_{\rm{C}}}{\rm{Ç}}{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)}}{{{\rm{P}}\left( {{{\rm{A}}_{\rm{E}}}{\rm{Ç}}{{\rm{A}}_{\rm{L}}}} \right)}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.2}}}}{{{\rm{0}}{\rm{.22}}}}\\{\rm{ = 0}}{\rm{.91}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The composer Beethoven wrote \({\rm{9}}\) symphonies, \({\rm{9}}\) piano concertos (music for piano and orchestra), and \({\rm{32}}\) piano sonatas (music for solo piano).

a. How many ways are there to play first a Beethoven symphony and then a Beethoven piano concerto?

b. The manager of a radio station decides that on each successive evening (\({\rm{7}}\) days per week), a Beethoven symphony will be played followed by a Beethoven piano concerto followed by a Beethoven piano sonata. For how many years could this policy be continued before exactly the same program would have to be repeated?

a. A lumber company has just taken delivery on a shipment of \({\rm{10,000 2 \times 4}}\)boards. Suppose that 20% of these boards (\({\rm{2000}}\)) are actually too green to be used in first-quality construction. Two boards are selected at random, one after the other. Let A 5 {the first board is green} and B 5 {the second board is green}. Compute \({\rm{P(A),P(B)}}\), and \({\rm{P(A}} \cap {\rm{B)}}\) (a tree diagram might help). Are \({\rm{A}}\) and \({\rm{B}}\) independent?

b. With \({\rm{A}}\) and \({\rm{B}}\) independent and \({\rm{P(A) = P(B) = }}{\rm{.2,}}\) what is \({\rm{P(A}} \cap {\rm{B)}}\)? How much difference is there between this answer and \({\rm{P(A}} \cap {\rm{B)}}\)part (a)? For purposes of calculating \({\rm{P(A}} \cap {\rm{B)}}\), can we assume that \({\rm{A}}\)and \({\rm{B}}\) of part (a) are independent to obtain essentially the correct probability?

c. Suppose the shipment consists of ten boards, of which two are green. Does the assumption of independence now yield approximately the correct answer for \({\rm{P(A}} \cap {\rm{B)}}\)? What is the critical difference between the situation here and that of part (a)? When do you think an independence assumption would be valid in obtaining an approximately correct answer to \({\rm{P(A}} \cap {\rm{B)}}\)?

Refer back to the series-parallel system configuration introduced in, and suppose that there are only two cells rather than three in each parallel subsystem eliminate cells 3 and\({\bf{6}}\), and renumber cells \(4\) and \(5\) as \(3\) and \(4\). The probability that system lifetime exceeds t0 is easily seen to be \(.{\bf{9639}}\). To what value would \(.9\) have to be changed in order to increase the system lifetime reliability from \(.{\bf{9639}}\)to \(.{\bf{99}}\)? (Hint: Let P(Ai ) 5 p, express system reliability in terms of p, and then let x 5 p2 .)

An academic department with five faculty members narrowed its choice for department head to either candidate A or candidate B. Each member then voted on a slip of paper for one of the candidates. Suppose there are actually three votes for A and two for B. If the slips are selected for tallying in random order, what is the probability that A remains ahead of B throughout the vote count (e.g., this event occurs if the selected ordering is AABAB, but not for ABBAA)?

Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S).Consider observing the direction for each of three successive vehicles.

a. List all outcomes in the event Athat all three vehicles go in the same direction.

b. List all outcomes in the event Bthat all three vehicles take different directions.

c. List all outcomes in the event Cthat exactly two of the three vehicles turn right.

d. List all outcomes in the event Dthat exactly two vehicles go in the same direction.

e. List outcomes in D’, C\( \cup \)D, and C\( \cap \)D.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free