Chapter 2: Q64E (page 84)
Chapter 2: Q64E (page 84)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the system of components connected as in the accompanying picture. Components \({\rm{1}}\) and \({\rm{2}}\) are connected in parallel, so that subsystem works iff either 1 or 2 works; since \({\rm{3}}\)and\({\rm{4}}\) are connected in series, that subsystem works iff both\({\rm{3}}\)and\({\rm{4}}\)work. If components work independently of one another and P(component i works) \({\rm{ = }}{\rm{.9}}\)for \({\rm{i = }}{\rm{.1,2}}\)and \({\rm{ = }}{\rm{.8}}\)for \({\rm{i = 3,4}}\),calculate P(system works).
There has been a great deal of controversy over the last several years regarding what types of surveillance are appropriate to prevent terrorism. Suppose a particular surveillance system has a \({\rm{99\% }}\) chance of correctly identifying a future terrorist and a \({\rm{99}}{\rm{.9\% }}\)chance of correctly identifying someone who is not a future terrorist. If there are \({\rm{1000}}\) future terrorists in a population of \({\rm{300}}\) million, and one of these \({\rm{300}}\) million is randomly selected, scrutinized by the system, and identified as a future terrorist, what is the probability that he/she actually is a future terrorist? Does the value of this probability make you uneasy about using the surveillance system? Explain.
A starting lineup in basketball consists of two guards, two forwards, and a center.
a. A certain college team has on its roster three centers, four guards, four forwards, and one individual (X) who can play either guard or forward. How many different starting lineups can be created? (Hint: Consider lineups without X, then lineups with X as guard, then lineups with X as forward.)
b. Now suppose the roster has \({\rm{5}}\) guards, \({\rm{5}}\) forwards, \({\rm{3}}\)centers, and \({\rm{2}}\) “swing players” (X and Y) who can play either guard or forward. If 5 of the \({\rm{15}}\) players are randomly selected, what is the probability that they constitute a legitimate starting lineup?
A certain shop repairs both audio and video components. Let A denote the event that the next component brought in for repair is an audio component, and let B be the event that the next component is a compact disc player (so the event B is contained in A). Suppose that \(P\left( A \right) = 0.6\)and\(P\left( B \right) = 0.05\). What is\(P\left( {B|A} \right)\)?
What do you think about this solution?
We value your feedback to improve our textbook solutions.