Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One of the assumptions underlying the theory of control charting is that successive plotted points are independent of one another. Each plotted point can signal either that a manufacturing process is operating correctly or that there is some sort of malfunction.

Short Answer

Expert verified

The solution is

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right) = 0.401\\P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right) = 0.723\end{array}\)

Step by step solution

01

Introduction

The updated chance of an event occurring after additional information is taken into account is known as posterior probability.

02

Explanation

Denote events:

\({{\rm{A}}_{\rm{i}}}{\rm{ = \{ }}\)point i error was signaled incorrectly\({\rm{\} ,i = 1,2, \ldots ,25}}\).

The probabilities of each of the events is the same and it is \({\rm{0}}{\rm{.05}}\) (given in the exercise).

We are asked to find the probability that at least one of \({\rm{10}}\) successive points indicate a problem when in fact the process is operating correctly which is the union of events \({{\rm{A}}_{\rm{1}}}{\rm{,}}{{\rm{A}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{A}}_{{\rm{10}}}}\) (at least one)

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right)\\\mathop = \limits^{(1)} P\left( {{{\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{10}^\prime } \right)}^\prime }} \right)\\\mathop = \limits^{(2)} 1 - P\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{10}^\prime } \right)\\\mathop = \limits^{(3)} 1 - P\left( {A_1^\prime } \right) \cdot P\left( {A_2^\prime } \right) \cdot \ldots \cdot P\left( {A_{10}^\prime } \right)\\\mathop = \limits^{(4)} 1 - (1 - 0.05) \cdot (1 - 0.05) \cdot \ldots \cdot (1 - 0.05)\\ = 1 - {0.95^{10}}\\ = 0.401\end{array}\)

(1): here we use De Morgan's Law,

(2): for any event\(A,P\left( {{A^\prime }} \right) + P(A) = 1\),

(3): the events (points) are independent, so we can use the multiplication property given below,

03

Explanation of multiplication property

(4): using\(A,P\left( {{A^\prime }} \right) + P(A) = 1\).

Multiplication Property:

For events \({A_1},{A_2}, \ldots ,{A_n},n \in \mathbb{N}\)we say that they are mutually independent if

\(\begin{array}{l}P\left( {{A_{{i_1}}} \cap {A_{{i_2}}} \ldots {A_{{i_k}}}} \right)\\ = P\left( {{A_{{i_1}}}} \right) \cdot P\left( {{A_{{i_2}}}} \right) \cdot \ldots \cdot P\left( {{A_{{i_k}}}} \right)\end{array}\)

for every\(k \in \{ 2,3, \ldots ,n\} \), and every subset of indices\({{\rm{i}}_{\rm{1}}}{\rm{,}}{{\rm{i}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{i}}_{\rm{k}}}\).

Given \({\rm{25}}\) successive points, similarly we obtain

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right)\\\mathop = \limits^{(1)} P\left( {{{\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{25}^\prime } \right)}^\prime }} \right)\\\mathop = \limits^{(2)} 1 - P\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{25}^\prime } \right)\\\mathop = \limits^{(3)} 1 - P\left( {A_1^\prime } \right) \cdot P\left( {A_2^\prime } \right) \cdot \ldots \cdot P\left( {A_{25}^\prime } \right)\\\mathop = \limits^{(4)} 1 - (1 - 0.05) \cdot (1 - 0.05) \cdot \ldots \cdot (1 - 0.05)\\ = 1 - {0.95^{25}}\\ = 0.723.\end{array}\)

(1): here we use De Morgan's Law,

(2): for any event\(A,P\left( {{A^\prime }} \right) + P(A) = 1\),

(3): the events (points) are independent, so we can use the multiplication property given above,

(4): using\(A,P\left( {{A^\prime }} \right) + P(A) = 1\)

Therefore, the result is

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right) = 0.401\\P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right) = 0.723\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wallet contains five \(10 bills, four \)5 bills, and six \(1 bills (nothing larger). If the bills are selected one by one in random order, what is the probability that at least two bills must be selected to obtain a first \)10 bill?

A department store sells sports shirts in three sizes (small, medium, and large), three patterns (plaid, print, and stripe), and two sleeve lengths (long and short). The accompanying tables give the proportions of shirts sold in the various category combinations.

a. What is the probability that the next shirt sold is a medium, long-sleeved, print shirt?

b. What is the probability that the next shirt sold is a medium print shirt?

c. What is the probability that the next shirt sold is a short-sleeved shirt? A long-sleeved shirt?

d. What is the probability that the size of the next shirt sold is the medium? That the pattern of the next shirt sold as a print?

e. Given that the shirt just sold was a short-sleeved plaid, what is the probability that its size was medium?

f. Given that the shirt just sold was a medium plaid, what is the probability that it was short-sleeved? Long-sleeved?

If \({\rm{P(B}}\mid {\rm{A) > P(B)}}\), show that \({\rm{P}}\left( {{{\rm{B}}^{\rm{'}}}\mid {\rm{A}}} \right){\rm{ < P}}\left( {{{\rm{B}}^{\rm{'}}}} \right)\). (Hint: Add \({\rm{P}}\left( {{{\rm{B}}'}\mid {\rm{A}}} \right)\) to both sides of the given inequality.)

Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a \({\rm{CD}}\) player. Let \({{\rm{A}}_{\rm{1}}}\) be the event that the receiver functions properly throughout the warranty period, \({{\rm{A}}_{\rm{2}}}\) be the event that the speakers function properly throughout the warranty period, and \({{\rm{A}}_{\rm{3}}}\) be the event that the \({\rm{CD}}\) player functions properly throughout the warranty period. Suppose that these events are (mutually) independent with \({\rm{P}}\left( {{{\rm{A}}_{\rm{1}}}} \right){\rm{ = }}{\rm{.95}}\), \({\rm{P}}\left( {{{\rm{A}}_{\rm{2}}}} \right){\rm{ = }}{\rm{.98}}\), and \({\rm{P}}\left( {{{\rm{A}}_{\rm{3}}}} \right){\rm{ = }}{\rm{.80}}\).

a. What is the probability that all three components function properly throughout the warranty period?

b. What is the probability that at least one component needs service during the warranty period?

c. What is the probability that all three components need service during the warranty period?

d. What is the probability that only the receiver needs service during the warranty period?

e. What is the probability that exactly one of the three components needs service during the warranty period?

f. What is the probability that all three components function properly throughout the warranty period but that at least one fails within a month after the warranty expires?

An experimenter is studying the effects of temperature, pressure, and type of catalyst on yield from a certain chemical reaction. Three different temperatures, four different pressures, and five different catalysts are under consideration.

a. If any particular experimental run involves the use of a single temperature, pressure, and catalyst, how many experimental runs are possible?

b. How many experimental runs are there that involve use of the lowest temperature and two lowest pressures?

c. Suppose that five different experimental runs are to be made on the first day of experimentation. If the five are randomly selected from among all the possibilities, so that any group of five has the same probability of selection, what is the probability that a different catalyst is used on each run?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free