Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One of the assumptions underlying the theory of control charting is that successive plotted points are independent of one another. Each plotted point can signal either that a manufacturing process is operating correctly or that there is some sort of malfunction.

Short Answer

Expert verified

The solution is

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right) = 0.401\\P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right) = 0.723\end{array}\)

Step by step solution

01

Introduction

The updated chance of an event occurring after additional information is taken into account is known as posterior probability.

02

Explanation

Denote events:

\({{\rm{A}}_{\rm{i}}}{\rm{ = \{ }}\)point i error was signaled incorrectly\({\rm{\} ,i = 1,2, \ldots ,25}}\).

The probabilities of each of the events is the same and it is \({\rm{0}}{\rm{.05}}\) (given in the exercise).

We are asked to find the probability that at least one of \({\rm{10}}\) successive points indicate a problem when in fact the process is operating correctly which is the union of events \({{\rm{A}}_{\rm{1}}}{\rm{,}}{{\rm{A}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{A}}_{{\rm{10}}}}\) (at least one)

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right)\\\mathop = \limits^{(1)} P\left( {{{\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{10}^\prime } \right)}^\prime }} \right)\\\mathop = \limits^{(2)} 1 - P\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{10}^\prime } \right)\\\mathop = \limits^{(3)} 1 - P\left( {A_1^\prime } \right) \cdot P\left( {A_2^\prime } \right) \cdot \ldots \cdot P\left( {A_{10}^\prime } \right)\\\mathop = \limits^{(4)} 1 - (1 - 0.05) \cdot (1 - 0.05) \cdot \ldots \cdot (1 - 0.05)\\ = 1 - {0.95^{10}}\\ = 0.401\end{array}\)

(1): here we use De Morgan's Law,

(2): for any event\(A,P\left( {{A^\prime }} \right) + P(A) = 1\),

(3): the events (points) are independent, so we can use the multiplication property given below,

(4): using\(A,P\left( {{A^\prime }} \right) + P(A) = 1\).

03

Explanation of multiplication property

Multiplication Property:

For events \({A_1},{A_2}, \ldots ,{A_n},n \in \mathbb{N}\)we say that they are mutually independent if

\(\begin{array}{l}P\left( {{A_{{i_1}}} \cap {A_{{i_2}}} \ldots {A_{{i_k}}}} \right)\\ = P\left( {{A_{{i_1}}}} \right) \cdot P\left( {{A_{{i_2}}}} \right) \cdot \ldots \cdot P\left( {{A_{{i_k}}}} \right)\end{array}\)

for every\(k \in \{ 2,3, \ldots ,n\} \), and every subset of indices\({{\rm{i}}_{\rm{1}}}{\rm{,}}{{\rm{i}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{i}}_{\rm{k}}}\).

Given \({\rm{25}}\) successive points, similarly we obtain

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right)\\\mathop = \limits^{(1)} P\left( {{{\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{25}^\prime } \right)}^\prime }} \right)\\\mathop = \limits^{(2)} 1 - P\left( {A_1^\prime \cap A_2^\prime \cap \ldots \cap A_{25}^\prime } \right)\\\mathop = \limits^{(3)} 1 - P\left( {A_1^\prime } \right) \cdot P\left( {A_2^\prime } \right) \cdot \ldots \cdot P\left( {A_{25}^\prime } \right)\\\mathop = \limits^{(4)} 1 - (1 - 0.05) \cdot (1 - 0.05) \cdot \ldots \cdot (1 - 0.05)\\ = 1 - {0.95^{25}}\\ = 0.723.\end{array}\)

(1): here we use De Morgan's Law,

(2): for any event\(A,P\left( {{A^\prime }} \right) + P(A) = 1\),

(3): the events (points) are independent, so we can use the multiplication property given above,

(4): using\(A,P\left( {{A^\prime }} \right) + P(A) = 1\)

Therefore, the result is

\(\begin{array}{l}P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{10}}} \right) = 0.401\\P\left( {{A_1} \cup {A_2} \cup \ldots \cup {A_{25}}} \right) = 0.723\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An insurance company offers four different deductible levelsโ€”none, low, medium, and highโ€”for its home ownerโ€™s policy holders and three different levelsโ€”low, medium, and highโ€”for its automobile policyholders. The accompanying table gives proportions for the various categories of policyholders who have both types of insurance. For example, the proportion of individuals with both low homeownerโ€™s deductible and low auto deductible is .06(6% of all such individuals).

Homeownerโ€™s

Auto N L M H

L .04 .06 .05 .03

M .07 .10 .20 .10

H .02 .03 .15 .15

Suppose an individual having both types of policies is randomly selected.

a. What is the probability that the individual has a medium auto deductible and a high homeownerโ€™s deductible?

b. What is the probability that the individual has a low auto deductible? A low homeownerโ€™s deductible?

c. What is the probability that the individual is in the same category for both auto and homeownerโ€™s deductibles?

d. Based on your answer in part (c), what is the probability that the two categories are different?

e. What is the probability that the individual has at least one low deductible level?

f. Using the answer in part (e), what is the probability that neither deductible level is low?

A system consists of two identical pumps, \(\# 1\) and \(\# 2\). If one pump fails, the system will still operate. However, because of the added strain, the remaining pump is now more likely to fail than was originally the case. That is, \(r\; = P\left( {\# 2\;fails|\# 1 fails} \right) > P\left( {\# 2 fails} \right) = q\). If at least one pump fails by the end of the pump design life in \(7\% \) of all systems and both pumps fail during that period in only 1%, what is the probability that pump \(\# 1\)will fail during the pump design life?

Suppose that vehicles taking a particular freeway exit can turn right (R), turn left (L), or go straight (S).Consider observing the direction for each of three successive vehicles.

a. List all outcomes in the event Athat all three vehicles go in the same direction.

b. List all outcomes in the event Bthat all three vehicles take different directions.

c. List all outcomes in the event Cthat exactly two of the three vehicles turn right.

d. List all outcomes in the event Dthat exactly two vehicles go in the same direction.

e. List outcomes in Dโ€™, C\( \cup \)D, and C\( \cap \)D.

Consider independently rolling two fair dice, one red and the other green. Let A be the event that the red die shows \({\rm{3}}\) dots, B be the event that the green die shows \({\rm{4}}\) dots, and C be the event that the total number of dots showing on the two dice is \({\rm{7}}\). Are these events pairwise independent (i.e., are \({\rm{A}}\) and \({\rm{B}}\) independent events, are \({\rm{A}}\) and \({\rm{C}}\) independent, and are \({\rm{B}}\) and \({\rm{C}}\) independent)? Are the three events mutually independent?

The composer Beethoven wrote \({\rm{9}}\) symphonies, \({\rm{9}}\) piano concertos (music for piano and orchestra), and \({\rm{32}}\) piano sonatas (music for solo piano).

a. How many ways are there to play first a Beethoven symphony and then a Beethoven piano concerto?

b. The manager of a radio station decides that on each successive evening (\({\rm{7}}\) days per week), a Beethoven symphony will be played followed by a Beethoven piano concerto followed by a Beethoven piano sonata. For how many years could this policy be continued before exactly the same program would have to be repeated?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free