Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that for any three events \({\rm{A,B}}\), and \({\rm{C}}\) with \({\rm{P(C) > 0}}\),\({\rm{P(A}} \cup {\rm{B}}\mid {\rm{C) = P(A}}\mid {\rm{C) + P(B}}\mid {\rm{C) - P(A}} \cap {\rm{B}}\mid {\rm{C)}}\).

Short Answer

Expert verified

The solution is

\(P(A \cup B\mid C) = P(A\mid C) + P(B\mid C) + P(A \cap B\mid C)\)

Step by step solution

01

Definition

The updated chance of an event occurring after additional information is taken into account is known as posterior probability.

02

Proofing that \({\rm{P}}\left( {{{\rm{B}}^{\rm{'}}}\mid {\rm{A}}} \right){\rm{ < P}}\left( {{{\rm{B}}^{\rm{'}}}} \right)\)

Remember the proposition:

Proposition: There are two events A and B for every two occurrences A and B.\({\rm{P(A}} \cup {\rm{B) = P(A) + P(B) - P(A}} \cap {\rm{B)}}\)

Given the occurrence of event B, the conditional probability of A is\({\rm{P(B) > 0}}\).

\({\rm{P(A}}\mid {\rm{B) = }}\frac{{{\rm{P(A}} \cap {\rm{B)}}}}{{{\rm{P(B)}}}}\)

03

Prove that \({\rm{P(A}} \cup {\rm{B}}\mid {\rm{C) = P(A}}\mid {\rm{C) + P(B}}\mid {\rm{C) + P(A}} \cap {\rm{B}}\mid {\rm{C)}}\)

For any two events \({\rm{A}}\)and.The following is true based on the definition and proposition:

\(\begin{aligned}P(A \cup B\mid C) &= P((A \cup B) \cap C) \\ &= \frac{{P((A \cap C) \cup (B \cap C))}}{{P(C)}}\frac{{P(A \cap C)}}{{P(C)}} \\ &= \frac{{P(A \cap C) + P(B \cap C) - P(A \cap B \cap C)}}{{P(C)}} \\ &= \frac{{P(A \cap C)}}{{P(C)}} + \frac{{P(B \cap C)}}{{P(C)}} - \frac{{P((A \cap B) \cap C)}}{{P(C)}} \\ &= P(A\mid C) + P(B\mid C) + P(A \cap B\mid C) \\ \end{aligned} \)

(1): from the definition of conditional probability,

(2): this is true for any three events \(\backslash {\mathop{\rm Big}\nolimits} ((A \cup B) \cap C = (A \cap C) \cup (B \cap C)\backslash \) Big),

(3): We'll employ the above-mentioned proposition in this case.

(4): This is the inverse of the conditional probability definition.

Therefore, the solution is \(P(A \cup B\mid C) = P(A\mid C) + P(B\mid C) + P(A \cap B\mid C)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A mutual fund company offers its customers a varietyof funds: a money-market fund, three different bond funds (short, intermediate, and long-term), two stock funds (moderate and high-risk), and a balanced fund.

Among customers who own shares in just one fund,the percentages of customers in the different funds areas follows:

Money-market 20% High-risk stock 18%

Short bond 15% Moderate-risk stock 25%

Intermediate bond 10% Balanced 7%

Long bond 5%

A customer who owns shares in just one fund is randomlyselected.

a. What is the probability that the selected individualowns shares in the balanced fund?

b. What is the probability that the individual owns shares in a bond fund?

c. What is the probability that the selected individual does not own shares in a stock fund?

Computer keyboard failures can be attributed to electrical defects or mechanical defects. A repair facility currently has \({\rm{25}}\) failed keyboards, \({\rm{6}}\) of which have electrical defects and 19 of which have mechanical defects.

a. How many ways are there to randomly select \({\rm{5}}\) of these keyboards for a thorough inspection (without regard to order)?

b. In how many ways can a sample of\({\rm{5}}\) keyboards be selected so that exactly two have an electrical defect?

c. If a sample of \({\rm{5}}\) keyboards is randomly selected, what is the probability that at least \({\rm{4}}\) of these will have a mechanical defect

Human visual inspection of solder joints on printed circuit boards can be very subjective. Part of the problem stems from the numerous types of solder defects (e.g., pad non wetting, knee visibility, voids) and even the degree to which a joint possesses one or more of these defects. Consequently, even highly trained inspectors can disagree on the disposition of a particular joint. In one batch of 10,000 joints, inspector A found 724 that were judged defective, inspector B found 751 such joints, and 1159 of the joints were judged defective by at least one of the inspectors. Suppose that one of the 10,000 joints is randomly selected.

a. What is the probability that the selected joint was judged to be defective by neither of the two inspectors?

b. What is the probability that the selected joint was judged to be defective by inspector B but not by inspector A?

Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a \({\rm{CD}}\) player. Let \({{\rm{A}}_{\rm{1}}}\) be the event that the receiver functions properly throughout the warranty period, \({{\rm{A}}_{\rm{2}}}\) be the event that the speakers function properly throughout the warranty period, and \({{\rm{A}}_{\rm{3}}}\) be the event that the \({\rm{CD}}\) player functions properly throughout the warranty period. Suppose that these events are (mutually) independent with \({\rm{P}}\left( {{{\rm{A}}_{\rm{1}}}} \right){\rm{ = }}{\rm{.95}}\), \({\rm{P}}\left( {{{\rm{A}}_{\rm{2}}}} \right){\rm{ = }}{\rm{.98}}\), and \({\rm{P}}\left( {{{\rm{A}}_{\rm{3}}}} \right){\rm{ = }}{\rm{.80}}\).

a. What is the probability that all three components function properly throughout the warranty period?

b. What is the probability that at least one component needs service during the warranty period?

c. What is the probability that all three components need service during the warranty period?

d. What is the probability that only the receiver needs service during the warranty period?

e. What is the probability that exactly one of the three components needs service during the warranty period?

f. What is the probability that all three components function properly throughout the warranty period but that at least one fails within a month after the warranty expires?

The computers of six faculty members in a certain department are to be replaced. Two of the faculty members have selected laptop machines and the other four have chosen desktop machines. Suppose that only two of the setups can be done on a particular day, and the two computers to be set up are randomly selected from the six (implying 15 equally likely outcomes; if the computers are numbered1, 2,โ€ฆ, 6, then one outcome consists of computers 1 and2, another consists of computers 1 and 3, and so on).

a. What is the probability that both selected setups are for laptop computers?

b. What is the probability that both selected setups are desktop machines?

c. What is the probability that at least one selected setup is for a desktop computer?

d. What is the probability that at least one computer of each type is chosen for setup?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free