Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An academic department with five faculty members narrowed its choice for department head to either candidate A or candidate B. Each member then voted on a slip of paper for one of the candidates. Suppose there are actually three votes for A and two for B. If the slips are selected for tallying in random order, what is the probability that A remains ahead of B throughout the vote count (e.g., this event occurs if the selected ordering is AABAB, but not for ABBAA)?

Short Answer

Expert verified

The probability is \({\rm{0}}{\rm{.2}}{\rm{. }}\) that A remains ahead of B throughout the vote count.

Step by step solution

01

Definition

The term "probability" simply refers to the likelihood of something occurring. We may talk about the probabilities of particular outcomes—how likely they are—when we're unclear about the result of an event. Statistics is the study of occurrences guided by probability.

02

Finding the probability

We can list all outcomes, see what outcomes are favorable and use

\({\rm{P(A) = }}\frac{{{\rm{ \# favorableoutcomesinA}}}}{{{\rm{ \# outcomesinthesamplespace}}}}{\rm{.}}\)

There are

\(\left( {\begin{aligned}{\rm{5}}\\{\rm{3}}\end{aligned}} \right)\)

ways to select positions for A votes (or equally

\(\left( {\begin{aligned}{\rm{5}}\\{\rm{2}}\end{aligned}} \right)\)

ways to select positions for B votes):

\({\rm{BBAAA,BABAA,BAABA,BAAAB,ABBAA,ABABA,ABAAB,AABBA,AABAB,AAABB}}\)

and only two have \({\rm{A}}\)ahead of \({\rm{B}}\) trough out the vote - \({\rm{AABAB}}\) and\({\rm{AAABB}}\).

All outcomes are equally probable therefore we have that the probability that \({\rm{A}}\) remains ahead of \({\rm{B}}\) trough out the vote is

\(\begin{aligned}{\rm{P(A) = }}\frac{{{\rm{\# favorable outcomes in A }}}}{{{\rm{ \# out comes in the sample space}}}}\\{\rm{ = }}\frac{{\rm{2}}}{{{\rm{10}}}}\\{\rm{ = 0}}{\rm{.2}}{\rm{. }}\end{aligned}\)

Therefore, the probability is \({\rm{0}}{\rm{.2}}{\rm{. }}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

At a certain gas station, \({\rm{40\% }}\)of the customers use regular gas \(\left( {{{\rm{A}}_{\rm{1}}}} \right){\rm{,35\% }}\) use plus gas\(\left( {{{\rm{A}}_{\rm{2}}}} \right)\), and \({\rm{25\% }}\) use premium\(\left( {{{\rm{A}}_{\rm{3}}}} \right)\). Of those customers using regular gas, only \({\rm{30\% }}\) fill their tanks (event \({\rm{B}}\) ). Of those customers using plus, \({\rm{60\% }}\)fill their tanks, whereas of those using premium, \({\rm{50\% }}\)fill their tanks.

a. What is the probability that the next customer will request plus gas and fill the tank\(\left( {{{\rm{A}}_{\rm{2}}} \cap {\rm{B}}} \right)\)?

b. What is the probability that the next customer fills the tank?

c. If the next customer fills the tank, what is the probability that regular gas is requested? Plus? Premium?

The computers of six faculty members in a certain department are to be replaced. Two of the faculty members have selected laptop machines and the other four have chosen desktop machines. Suppose that only two of the setups can be done on a particular day, and the two computers to be set up are randomly selected from the six (implying 15 equally likely outcomes; if the computers are numbered1, 2,…, 6, then one outcome consists of computers 1 and2, another consists of computers 1 and 3, and so on).

a. What is the probability that both selected setups are for laptop computers?

b. What is the probability that both selected setups are desktop machines?

c. What is the probability that at least one selected setup is for a desktop computer?

d. What is the probability that at least one computer of each type is chosen for setup?

Two pumps connected in parallel fail independently of one another on any given day. The probability that only the older pump will fail is \({\rm{.10}}\), and the probability that only the newer pump will fail is \({\rm{.05}}\). What is the probability that the pumping system will fail on any given day (which happens if both pumps fail)?

Use Venn diagrams to verify the following two relationships for any events Aand B (these are called De Morgan’s laws):

a.\(\left( {A \cup B} \right)' = A' \cap B'\)

b.\(\left( {A \cap B} \right)' = A' \cup B'\)

Hint:In each part, draw a diagram corresponding to the left side and another corresponding to the right side.)

The route used by a certain motorist in commuting to work contains two intersections with traffic signals. The probability that he must stop at the first signal is .4, the analogous probability for the second signal is .5, and the probability that he must stop at at least one of the two signals is .7. What is the probability that he must stop

a. At both signals?

b. At the first signal but not at the second one?

c. At exactly one signal?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free