Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article from which the data in Exercise 1 was extracted also gave the accompanying strength observations for cylinders:

\(\begin{array}{l}\begin{array}{*{20}{r}}{{\rm{6}}{\rm{.1}}}&{{\rm{5}}{\rm{.8}}}&{{\rm{7}}{\rm{.8}}}&{{\rm{7}}{\rm{.1}}}&{{\rm{7}}{\rm{.2}}}&{{\rm{9}}{\rm{.2}}}&{{\rm{6}}{\rm{.6}}}&{{\rm{8}}{\rm{.3}}}&{{\rm{7}}{\rm{.0}}}&{{\rm{8}}{\rm{.3}}}\\{{\rm{7}}{\rm{.8}}}&{{\rm{8}}{\rm{.1}}}&{{\rm{7}}{\rm{.4}}}&{{\rm{8}}{\rm{.5}}}&{{\rm{8}}{\rm{.9}}}&{{\rm{9}}{\rm{.8}}}&{{\rm{9}}{\rm{.7}}}&{{\rm{14}}{\rm{.1}}}&{{\rm{12}}{\rm{.6}}}&{{\rm{11}}{\rm{.2}}}\end{array}\\\begin{array}{*{20}{l}}{{\rm{7}}{\rm{.8}}}&{{\rm{8}}{\rm{.1}}}&{{\rm{7}}{\rm{.4}}}&{{\rm{8}}{\rm{.5}}}&{{\rm{8}}{\rm{.9}}}&{{\rm{9}}{\rm{.8}}}&{{\rm{9}}{\rm{.7}}}&{{\rm{14}}{\rm{.1}}}&{{\rm{12}}{\rm{.6}}}&{{\rm{11}}{\rm{.2}}}\end{array}\end{array}\)

Prior to obtaining data, denote the beam strengths by X1, … ,Xm and the cylinder strengths by Y1, . . . , Yn. Suppose that the Xi ’s constitute a random sample from a distribution with mean m1 and standard deviation s1 and that the Yi ’s form a random sample (independent of the Xi ’s) from another distribution with mean m2 and standard deviation\({{\rm{\sigma }}_{\rm{2}}}\).

a. Use rules of expected value to show that \({\rm{\bar X - \bar Y}}\)is an unbiased estimator of \({{\rm{\mu }}_{\rm{1}}}{\rm{ - }}{{\rm{\mu }}_{\rm{2}}}\). Calculate the estimate for the given data.

b. Use rules of variance from Chapter 5 to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a), and then compute the estimated standard error.

c. Calculate a point estimate of the ratio \({{\rm{\sigma }}_{\rm{1}}}{\rm{/}}{{\rm{\sigma }}_{\rm{2}}}\)of the two standard deviations.

d. Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate of the variance of the difference \({\rm{X - Y}}\) between beam strength and cylinder strength.

Short Answer

Expert verified

The estimate value is \({\rm{0}}{\rm{.434}}\)

The standard error is predicted to be \({\rm{0}}{\rm{.5687}}{\rm{.}}\)

The point estimate of the ratio \({\sigma _1}/{\sigma _2}\) is \(0.789\).

The point estimate of the variance is \({\rm{7}}{\rm{.1824}}\).

Step by step solution

01

Concept introduction

The mean of the sample mean X that we just calculated is identical to the population mean. We just calculated the standard deviation of the sample mean X, which is the population standard deviation divided by the square root of the sample size: 10=20/2.

02

Estimation of the sample mean for the beam strengths

(a)

The following holds,

\(\begin{array}{l}{\rm{E(\bar X - \bar Y) = E(\bar X) - E(\bar Y)}}\\{\rm{ = E}}\left( {\frac{{\rm{1}}}{{\rm{m}}}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{X}}_{\rm{i}}}} } \right){\rm{ - E}}\left( {\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{n = 1}}}^{\rm{m}} {{{\rm{Y}}_{\rm{i}}}} } \right)\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{m}}}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {\rm{E}} \left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ - }}\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\rm{E}} \left( {{{\rm{Y}}_{\rm{i}}}} \right){\rm{n}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} \frac{{\rm{1}}}{{\rm{m}}}{\rm{ \times m \times E}}\left( {{{\rm{X}}_{\rm{1}}}} \right){\rm{ - }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ \times n \times E}}\left( {{{\rm{Y}}_{\rm{1}}}} \right)\\{\rm{ = }}{{\rm{\mu }}_{\rm{1}}}{\rm{ - }}{{\rm{\mu }}_{\rm{2}}}\end{array}\)

(1): The distributions of \({X_i}\)and \({Y_j}\)are identical.

This indicates that \(\bar X - \bar Y\)is an unbiased estimate of \({\mu _1} - {\mu _2}\).

The Sample Mean \(\bar x\)of observations \({x_1},{x_2}, \ldots ,{x_n}\)is calculated as follows:

\(\begin{array}{c}{\rm{\bar x = }}\frac{{{{\rm{x}}_{\rm{1}}}{\rm{ + }}{{\rm{x}}_{\rm{2}}}{\rm{ + \ldots + }}{{\rm{x}}_{\rm{n}}}}}{{\rm{n}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{{\rm{x}}_{\rm{i}}}} \end{array}\)

The sample mean for the beam strengths data was calculated in exercise 1 and is barx=8.141. The sample mean for cylinder strengths is

\(\begin{array}{c}{\rm{\bar y = }}\frac{{\rm{1}}}{{{\rm{20}}}}{\rm{(6}}{\rm{.1 + 5}}{\rm{.8 + \ldots + 11}}{\rm{.12)}}\\{\rm{ = 8}}{\rm{.575}}\end{array}\)

Therefore, the estimate value is \(\begin{array}{c}{\rm{\bar x - \bar y = 8}}{\rm{.141 - 8}}{\rm{.575}}\\{\rm{ = 0}}{\rm{.434}}\end{array}\)

03

Calculation of standard deviation

(b)

The following is true for the variance due to independence:

\(\begin{array}{c}{\rm{V(\bar X - \bar Y)}}\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{V(\bar X) + ( - 1}}{{\rm{)}}^{\rm{2}}}{\rm{V(\bar Y)}}\\{\rm{ = V}}\left( {\frac{{\rm{1}}}{{\rm{m}}}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {{{\rm{X}}_{\rm{i}}}} } \right){\rm{ + V}}\left( {\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{n = 1}}}^{\rm{m}} {{{\rm{Y}}_{\rm{i}}}} } \right)\end{array}\)

\(\begin{array}{c}\mathop {\rm{ = }}\limits^{{\rm{(2)}}} \frac{{\rm{1}}}{{{{\rm{m}}^{\rm{2}}}}}\sum\limits_{{\rm{i = 1}}}^{\rm{m}} {\rm{V}} \left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\rm{V}} \left( {{{\rm{Y}}_{\rm{i}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} \frac{{\rm{1}}}{{{{\rm{m}}^{\rm{2}}}}}{\rm{ \times m \times V}}\left( {{{\rm{X}}_{\rm{1}}}} \right){\rm{ + }}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{2}}}}}{\rm{ \times n \times V}}\left( {{{\rm{Y}}_{\rm{1}}}} \right)\\{\rm{ = }}\frac{{{\rm{\sigma }}_{\rm{1}}^{\rm{2}}}}{{\rm{m}}}{\rm{ + }}\frac{{{\rm{\sigma }}_{\rm{2}}^{\rm{2}}}}{{\rm{n}}}\end{array}\)

(2): Independence.

The standard deviation is

\(\begin{array}{l}{{\rm{\sigma }}_{{\rm{\bar X}}}}{\rm{ - \bar Y = }}\sqrt {{\rm{V(\bar X - \bar Y)}}} \\{\rm{ = }}\sqrt {\frac{{{\rm{\sigma }}_{\rm{1}}^{\rm{2}}}}{{\rm{m}}}{\rm{ + }}\frac{{{\rm{\sigma }}_{\rm{2}}^{\rm{2}}}}{{\rm{n}}}} \end{array}\)

The sample variances \(\sigma _1^2\)and \(\sigma _2^2\)are required in order to calculate the estimate. For the first time, the sample standard deviation was calculated.

\({{\rm{s}}_{\rm{1}}}{\rm{ = 1}}{\rm{.66}}\)

The Sample Variance is \({s^2}\)is\({s^2} = \frac{1}{{n - 1}} \cdot {S_{xx}}.\)

Where,

\(\begin{array}{c}{{\rm{S}}_{{\rm{xx}}}}{\rm{ = }}\sum {{{\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \bar x}}} \right)}^{\rm{2}}}} \\{\rm{ = }}\sum {{\rm{x}}_{\rm{i}}^{\rm{2}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ \times }}{\left( {\sum {{{\rm{x}}_{\rm{i}}}} } \right)^{\rm{2}}}\end{array}\)

The Sample Standard Deviation \({\rm{s}}\)is

\(\begin{array}{c}{\rm{s = }}\sqrt {{{\rm{s}}^{\rm{2}}}} \\{\rm{ = }}\sqrt {\frac{{\rm{1}}}{{{\rm{n - 1}}}}{\rm{ \times }}{{\rm{S}}_{{\rm{xx}}}}} \end{array}\)

The squared data points, \(y_i^2\),are

\(37.21,33.64,60.84,50.41,51.84,84.64,43.56,68.89,49,68.89,60.84,65.61,54.76,72.25,79.21,96.04,94.09,198.81,158.76,125.44,\)

Thus, the \({S_{yy}}\)is

\(\begin{array}{c}{{\rm{S}}_{{\rm{yy}}}}{\rm{ = }}\sum {{\rm{y}}_{\rm{i}}^{\rm{2}}} {\rm{ - }}\frac{{\rm{1}}}{{\rm{n}}}{\rm{ \times }}{\left( {\sum {{{\rm{y}}_{\rm{i}}}} } \right)^{\rm{2}}}\\{\rm{ = 37}}{\rm{.21 + 33}}{\rm{.64 + \ldots + 125}}{\rm{.44 - }}\frac{{\rm{1}}}{{{\rm{20}}}}{\rm{ \times (6}}{\rm{.1 + 5}}{\rm{.8 + \ldots + 11}}{\rm{.2}}{{\rm{)}}^{\rm{2}}}\\{\rm{ = 1554}}{\rm{.73 - }}\frac{{\rm{1}}}{{{\rm{16}}}}{\rm{ \times 171}}{\rm{.}}{{\rm{5}}^{\rm{2}}}\\{\rm{ = 84}}{\rm{.1175}}\end{array}\)

And the sample variance is

\(\begin{array}{c}{\rm{s}}_{\rm{2}}^{\rm{2}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{16 - 1}}}}{\rm{ \times 84}}{\rm{.1175}}\\{\rm{ = 4}}{\rm{.427}}\end{array}\)
Also, the sample standard deviation is

\(\begin{array}{c}{\rm{s = }}\sqrt {{{\rm{s}}^{\rm{2}}}} \\{\rm{ = }}\sqrt {{\rm{4}}{\rm{.427}}} \\{\rm{ = 2}}{\rm{.104}}{\rm{.}}\end{array}\)

As a result, the standard error is predicted to be \(\begin{array}{c}{{\rm{s}}_{{\rm{\bar X - \bar Y}}}}{\rm{ = }}\sqrt {\frac{{{\rm{s}}_{\rm{1}}^{\rm{2}}}}{{\rm{m}}}{\rm{ + }}\frac{{{\rm{s}}_{\rm{2}}^{\rm{2}}}}{{\rm{n}}}} \\{\rm{ = }}\sqrt {\frac{{{\rm{1}}{\rm{.6}}{{\rm{6}}^{\rm{2}}}}}{{{\rm{27}}}}{\rm{ + }}\frac{{{\rm{2}}{\rm{.10}}{{\rm{4}}^{\rm{2}}}}}{{{\rm{20}}}}} \\{\rm{ = 0}}{\rm{.5687}}{\rm{.}}\end{array}\)

Hence, the required result is\({\rm{0}}{\rm{.5687}}\).

04

Finding the point estimate of the ratio

(c)

The point estimate of the ratio \({\sigma _1}/{\sigma _2}\)

\(\begin{array}{c}\frac{{{s_1}}}{{{s_2}}} = \frac{{1.66}}{{2.104}}\\ = 0.789.\end{array}\)

Thus, the required result is\(0.789\).

05

Finding the point estimate of the variance

(d)

The variance of \(X - Y\)is

\(\begin{array}{c}{\rm{V(X - Y)}}\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{V(X) + ( - 1}}{{\rm{)}}^{\rm{2}}}{\rm{V(Y)}}\\{\rm{ = \sigma }}_{\rm{1}}^{\rm{2}}{\rm{ + \sigma }}_{\rm{2}}^{\rm{2}}\end{array}\)

which yields a point estimate of the variance

\(\begin{array}{c}{\rm{s}}_{\rm{1}}^{\rm{2}}{\rm{ + s}}_{\rm{2}}^{\rm{2}}{\rm{ = 1}}{\rm{.6}}{{\rm{6}}^{\rm{2}}}{\rm{ + 2}}{\rm{.10}}{{\rm{4}}^{\rm{2}}}\\{\rm{ = 7}}{\rm{.1824}}\end{array}\)

Hence, the point estimate of the variance is\({\rm{7}}{\rm{.1824}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We defined a negative binomial\({\rm{rv}}\)as the number of failures that occur before the\({\rm{rth}}\)success in a sequence of independent and identical success/failure trials. The probability mass function (\({\rm{pmf}}\)) of\({\rm{X}}\)is\({\rm{nb(x,r,p) = }}\)\(\left( {\begin{array}{*{20}{c}}{{\rm{x + r - 1}}}\\{\rm{x}}\end{array}} \right){{\rm{p}}^{\rm{r}}}{{\rm{(1 - p)}}^{\rm{x}}}\quad {\rm{x = 0,1,2, \ldots }}\)

a. Suppose that. Show that\({\rm{\hat p = (r - 1)/(X + r - 1)}}\)is an unbiased estimator for\({\rm{p}}\). (Hint: Write out\({\rm{E(\hat p)}}\)and cancel\({\rm{x + r - 1}}\)inside the sum.)

b. A reporter wishing to interview five individuals who support a certain candidate begins asking people whether\({\rm{(S)}}\)or not\({\rm{(F)}}\)they support the candidate. If the sequence of responses is SFFSFFFSSS, estimate\({\rm{p = }}\)the true proportion who support the candidate.

Urinary angiotensinogen (AGT) level is one quantitative indicator of kidney function. The article “Urinary Angiotensinogen as a Potential Biomarker of Chronic Kidney Diseases” (J. of the Amer. Society of Hypertension, \({\rm{2008: 349 - 354}}\)) describes a study in which urinary AGT level \({\rm{(\mu g)}}\) was determined for a sample of adults with chronic kidney disease. Here is representative data (consistent with summary quantities and descriptions in the cited article):

An appropriate probability plot supports the use of the lognormal distribution (see Section \({\rm{4}}{\rm{.5}}\)) as a reasonable model for urinary AGT level (this is what the investigators did).

a. Estimate the parameters of the distribution. (Hint: Rem ember that \({\rm{X}}\) has a lognormal distribution with parameters \({\rm{\mu }}\) and \({{\rm{\sigma }}^{\rm{2}}}\) if \({\rm{ln(X)}}\) is normally distributed with mean \({\rm{\mu }}\) and variance \({{\rm{\sigma }}^{\rm{2}}}\).)

b. Use the estimates of part (a) to calculate an estimate of the expected value of AGT level. (Hint: What is \({\rm{E(X)}}\)?)

a. Let \({{\rm{X}}_{\rm{1}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) be a random sample from a uniform distribution on \({\rm{(0,\theta )}}\). Then the mle of \({\rm{\theta }}\) is \({\rm{\hat \theta = Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\). Use the fact that \({\rm{Y}} \le {\rm{y}}\) if each \({{\rm{X}}_{\rm{i}}} \le {\rm{y}}\) to derive the cdf of Y. Then show that the pdf of \({\rm{Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\) is \({{\rm{f}}_{\rm{Y}}}{\rm{(y) = }}\left\{ {\begin{array}{*{20}{c}}{\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}}&{{\rm{0}} \le {\rm{y}} \le {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

b. Use the result of part (a) to show that the mle is biased but that \({\rm{(n + 1)}}\)\({\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{/n}}\) is unbiased.

Each of 150 newly manufactured items is examined and the number of scratches per item is recorded (the items are supposed to be free of scratches), yielding the following data:

Assume that X has a Poisson distribution with parameter \({\bf{\mu }}.\)and that X represents the number of scratches on a randomly picked item.

a. Calculate the estimate for the data using an unbiased \({\bf{\mu }}.\)estimator. (Hint: for X Poisson, \({\rm{E(X) = \mu }}\) ,therefore \({\rm{E(\bar X) = ?)}}\)

c. What is your estimator's standard deviation (standard error)? Calculate the standard error estimate. (Hint: \({\rm{\sigma }}_{\rm{X}}^{\rm{2}}{\rm{ = \mu }}\), \({\rm{X}}\))

Of \({{\rm{n}}_{\rm{1}}}\)randomly selected male smokers, \({{\rm{X}}_{\rm{1}}}\) smoked filter cigarettes, whereas of \({{\rm{n}}_{\rm{2}}}\) randomly selected female smokers, \({{\rm{X}}_{\rm{2}}}\) smoked filter cigarettes. Let \({{\rm{p}}_{\rm{1}}}\) and \({{\rm{p}}_{\rm{2}}}\) denote the probabilities that a randomly selected male and female, respectively, smoke filter cigarettes.

a. Show that \({\rm{(}}{{\rm{X}}_{\rm{1}}}{\rm{/}}{{\rm{n}}_{\rm{1}}}{\rm{) - (}}{{\rm{X}}_{\rm{2}}}{\rm{/}}{{\rm{n}}_{\rm{2}}}{\rm{)}}\) is an unbiased estimator for \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\). (Hint: \({\rm{E(}}{{\rm{X}}_{\rm{i}}}{\rm{) = }}{{\rm{n}}_{\rm{i}}}{{\rm{p}}_{\rm{i}}}\) for \({\rm{i = 1,2}}\).)

b. What is the standard error of the estimator in part (a)?

c. How would you use the observed values \({{\rm{x}}_{\rm{1}}}\) and \({{\rm{x}}_{\rm{2}}}\) to estimate the standard error of your estimator?

d. If \({{\rm{n}}_{\rm{1}}}{\rm{ = }}{{\rm{n}}_{\rm{2}}}{\rm{ = 200, }}{{\rm{x}}_{\rm{1}}}{\rm{ = 127}}\), and \({{\rm{x}}_{\rm{2}}}{\rm{ = 176}}\), use the estimator of part (a) to obtain an estimate of \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\).

e. Use the result of part (c) and the data of part (d) to estimate the standard error of the estimator.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free