Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

a. Let \({{\rm{X}}_{\rm{1}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) be a random sample from a uniform distribution on \({\rm{(0,\theta )}}\). Then the mle of \({\rm{\theta }}\) is \({\rm{\hat \theta = Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\). Use the fact that \({\rm{Y}} \le {\rm{y}}\) if each \({{\rm{X}}_{\rm{i}}} \le {\rm{y}}\) to derive the cdf of Y. Then show that the pdf of \({\rm{Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\) is \({{\rm{f}}_{\rm{Y}}}{\rm{(y) = }}\left\{ {\begin{array}{*{20}{c}}{\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}}&{{\rm{0}} \le {\rm{y}} \le {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

b. Use the result of part (a) to show that the mle is biased but that \({\rm{(n + 1)}}\)\({\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{/n}}\) is unbiased.

Short Answer

Expert verified

(a) It is shown that \({{\rm{f}}_{\rm{Y}}}{\rm{(y) = F}}_{\rm{Y}}'{\rm{(y) = }}\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}{\rm{, 0}} \le {\rm{y}} \le {\rm{\theta }}\).

(b) It is shown that \({\rm{E(}}\widetilde {\rm{Y}}{\rm{) = \theta }}\).

Step by step solution

01

Define uniform distribution

A uniform distribution is a probability distribution in which every event inside a certain interval has the same probability of occurring. It's a graphical representation of a set of data in the form of a graph or a list.

02

Explanation

(a) The cdf of random variable Y can be calculated in the following manner.

\(\begin{array}{l}{{\rm{F}}_{\rm{Y}}}{\rm{(y) = P(Y}} \le {\rm{y)}}\\{\rm{ = P}}\left( {{\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right) \le {\rm{y}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{P}}\left( {{{\rm{X}}_{\rm{1}}} \le {\rm{y,}}{{\rm{X}}_{\rm{2}}} \le {\rm{y, \ldots ,}}{{\rm{X}}_{\rm{n}}} \le {\rm{y}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{P}}\left( {{{\rm{X}}_{\rm{1}}} \le {\rm{y}}} \right){\rm{ \times P}}\left( {{{\rm{X}}_{\rm{2}}} \le {\rm{y}}} \right){\rm{ \times \ldots \times P}}\left( {{{\rm{X}}_{\rm{n}}} \le {\rm{y}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(3)}}} {\left( {\frac{{\rm{y}}}{{\rm{\theta }}}} \right)^{\rm{n}}}{\rm{,0}} \le {\rm{y}} \le {\rm{\theta ,}}\end{array}\)

(1): if maximum is less than\({\rm{y}}\), then all\({{\rm{X}}_{\rm{i}}}\)are less.

(2): as a result of one's independence,

(3): a uniform distribution cdf on\(\left( {{\rm{0,\theta }}} \right)\).

It is simple to obtain pdf as a derivative of cdf if you have cdf,

\({{\rm{f}}_{\rm{Y}}}{\rm{(y) = F}}_{\rm{Y}}'{\rm{(y) = }}\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}{\rm{, 0}} \le {\rm{y}} \le {\rm{\theta }}\)

Otherwise, it is zero.

03

Explanation

(b) The estimator is unbiased if \({\rm{E(Y) = \theta }}\), however

\(\begin{array}{c}{\rm{E(Y) = }}\int_{\rm{0}}^{\rm{\theta }} {\rm{y}} {\rm{ \times }}\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}{\rm{dy}}\\{\rm{ = }}\left. {\frac{{\rm{n}}}{{{{\rm{\theta }}^{\rm{n}}}}}\frac{{{{\rm{y}}^{{\rm{n + 1}}}}}}{{{\rm{n + 1}}}}} \right|_{\rm{0}}^{\rm{\theta }}\\{\rm{ = }}\frac{{\rm{n}}}{{{\rm{n + 1}}}}{\rm{\theta }} \ne {\rm{\theta }}\end{array}\)

This indicates that the estimator isn't completely objective. Estimator,

however,

\({\rm{\tilde Y = }}\frac{{{\rm{n + 1}}}}{{\rm{n}}}\)

is objective because

\(\begin{array}{c}{\rm{E(\tilde Y) = E}}\left( {\frac{{{\rm{n + 1}}}}{{\rm{n}}}} \right)\\{\rm{ = }}\frac{{{\rm{n + 1}}}}{{\rm{n}}}{\rm{E(Y)}}\\{\rm{ = }}\frac{{{\rm{n + 1}}}}{{\rm{n}}}\frac{{\rm{n}}}{{{\rm{n + 1}}}}{\rm{\theta }}\\{\rm{ = \theta }}\end{array}\)

This indicates that the estimator \({\rm{\tilde Y}}\) is unbiased.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let\({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\)be a random sample from a pdf\({\rm{f(x)}}\)that is symmetric about\({\rm{\mu }}\), so that\({\rm{\backslash widetildeX}}\)is an unbiased estimator of\({\rm{\mu }}\). If\({\rm{n}}\)is large, it can be shown that\({\rm{V (\tilde X)\gg 1/}}\left( {{\rm{4n(f(\mu )}}{{\rm{)}}^{\rm{2}}}} \right)\).

a. Compare\({\rm{V(\backslash widetildeX)}}\)to\({\rm{V(\bar X)}}\)when the underlying distribution is normal.

b. When the underlying pdf is Cauchy (see Example 6.7),\({\rm{V(\bar X) = \yen}}\), so\({\rm{\bar X}}\)is a terrible estimator. What is\({\rm{V(\tilde X)}}\)in this case when\({\rm{n}}\)is large?

A sample of \({\rm{n}}\) captured Pandemonium jet fighters results in serial numbers\({{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{,}}{{\rm{x}}_{\rm{3}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}\). The CIA knows that the aircraft were numbered consecutively at the factory starting with \({\rm{\alpha }}\)and ending with\({\rm{\beta }}\), so that the total number of planes manufactured is \({\rm{\beta - \alpha + 1}}\) (e.g., if \({\rm{\alpha = 17}}\) and\({\rm{\beta = 29}}\), then \({\rm{29 - 17 + 1 = 13}}\)planes having serial numbers \({\rm{17,18,19, \ldots ,28,29}}\)were manufactured). However, the CIA does not know the values of \({\rm{\alpha }}\) or\({\rm{\beta }}\). A CIA statistician suggests using the estimator \({\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ - min}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ + 1}}\)to estimate the total number of planes manufactured.

a. If\({\rm{n = 5, x\_}}\left\{ {\rm{1}} \right\}{\rm{ = 237, x\_}}\left\{ {\rm{2}} \right\}{\rm{ = 375, x\_}}\left\{ {\rm{3}} \right\}{\rm{ = 202, x\_}}\left\{ {\rm{4}} \right\}{\rm{ = 525,}}\)and\({{\rm{x}}_{\rm{5}}}{\rm{ = 418}}\), what is the corresponding estimate?

b. Under what conditions on the sample will the value of the estimate be exactly equal to the true total number of planes? Will the estimate ever be larger than the true total? Do you think the estimator is unbiased for estimating\({\rm{\beta - \alpha + 1}}\)? Explain in one or two sentences.

\({{\rm{X}}_{\rm{1}}}{\rm{,}}.....{\rm{,}}{{\rm{X}}_{\rm{n}}}\)be a random sample from a gamma distribution with parameters \({\rm{\alpha }}\) and \({\rm{\beta }}\). a. Derive the equations whose solutions yield the maximum likelihood estimators of \({\rm{\alpha }}\) and \({\rm{\beta }}\). Do you think they can be solved explicitly? b. Show that the mle of \({\rm{\mu = \alpha \beta }}\) is \(\widehat {\rm{\mu }}{\rm{ = }}\overline {\rm{X}} \).

The article from which the data in Exercise 1 was extracted also gave the accompanying strength observations for cylinders:

\(\begin{array}{l}\begin{array}{*{20}{r}}{{\rm{6}}{\rm{.1}}}&{{\rm{5}}{\rm{.8}}}&{{\rm{7}}{\rm{.8}}}&{{\rm{7}}{\rm{.1}}}&{{\rm{7}}{\rm{.2}}}&{{\rm{9}}{\rm{.2}}}&{{\rm{6}}{\rm{.6}}}&{{\rm{8}}{\rm{.3}}}&{{\rm{7}}{\rm{.0}}}&{{\rm{8}}{\rm{.3}}}\\{{\rm{7}}{\rm{.8}}}&{{\rm{8}}{\rm{.1}}}&{{\rm{7}}{\rm{.4}}}&{{\rm{8}}{\rm{.5}}}&{{\rm{8}}{\rm{.9}}}&{{\rm{9}}{\rm{.8}}}&{{\rm{9}}{\rm{.7}}}&{{\rm{14}}{\rm{.1}}}&{{\rm{12}}{\rm{.6}}}&{{\rm{11}}{\rm{.2}}}\end{array}\\\begin{array}{*{20}{l}}{{\rm{7}}{\rm{.8}}}&{{\rm{8}}{\rm{.1}}}&{{\rm{7}}{\rm{.4}}}&{{\rm{8}}{\rm{.5}}}&{{\rm{8}}{\rm{.9}}}&{{\rm{9}}{\rm{.8}}}&{{\rm{9}}{\rm{.7}}}&{{\rm{14}}{\rm{.1}}}&{{\rm{12}}{\rm{.6}}}&{{\rm{11}}{\rm{.2}}}\end{array}\end{array}\)

Prior to obtaining data, denote the beam strengths by X1, โ€ฆ ,Xm and the cylinder strengths by Y1, . . . , Yn. Suppose that the Xi โ€™s constitute a random sample from a distribution with mean m1 and standard deviation s1 and that the Yi โ€™s form a random sample (independent of the Xi โ€™s) from another distribution with mean m2 and standard deviation\({{\rm{\sigma }}_{\rm{2}}}\).

a. Use rules of expected value to show that \({\rm{\bar X - \bar Y}}\)is an unbiased estimator of \({{\rm{\mu }}_{\rm{1}}}{\rm{ - }}{{\rm{\mu }}_{\rm{2}}}\). Calculate the estimate for the given data.

b. Use rules of variance from Chapter 5 to obtain an expression for the variance and standard deviation (standard error) of the estimator in part (a), and then compute the estimated standard error.

c. Calculate a point estimate of the ratio \({{\rm{\sigma }}_{\rm{1}}}{\rm{/}}{{\rm{\sigma }}_{\rm{2}}}\)of the two standard deviations.

d. Suppose a single beam and a single cylinder are randomly selected. Calculate a point estimate of the variance of the difference \({\rm{X - Y}}\) between beam strength and cylinder strength.

Consider a random sample \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}.....{\rm{,}}{{\rm{X}}_{\rm{n}}}\) from the shifted exponential pdf

\({\rm{f(x;\lambda ,\theta ) = }}\left\{ {\begin{array}{*{20}{c}}{{\rm{\lambda }}{{\rm{e}}^{{\rm{ - \lambda (x - \theta )}}}}}&{{\rm{x}} \ge {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\). Taking \({\rm{\theta = 0}}\) gives the pdf of the exponential distribution considered previously (with positive density to the right of zero). An example of the shifted exponential distribution appeared in Example \({\rm{4}}{\rm{.5}}\), in which the variable of interest was time headway in traffic flow and \({\rm{\theta = }}{\rm{.5}}\) was the minimum possible time headway. a. Obtain the maximum likelihood estimators of \({\rm{\theta }}\) and \({\rm{\lambda }}\). b. If \({\rm{n = 10}}\) time headway observations are made, resulting in the values \({\rm{3}}{\rm{.11,}}{\rm{.64,2}}{\rm{.55,2}}{\rm{.20,5}}{\rm{.44,3}}{\rm{.42,10}}{\rm{.39,8}}{\rm{.93,17}}{\rm{.82}}\), and \({\rm{1}}{\rm{.30}}\), calculate the estimates of \({\rm{\theta }}\) and \({\rm{\lambda }}\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free