Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An estimator \({\rm{\hat \theta }}\) is said to be consistent if for any \( \in {\rm{ > 0}}\), \({\rm{P(|\hat \theta - \theta |}} \ge \in {\rm{)}} \to {\rm{0}}\) as \({\rm{n}} \to \infty \). That is, \({\rm{\hat \theta }}\) is consistent if, as the sample size gets larger, it is less and less likely that \({\rm{\hat \theta }}\) will be further than \( \in \) from the true value of \({\rm{\theta }}\). Show that \({\rm{\bar X}}\) is a consistent estimator of \({\rm{\mu }}\) when \({{\rm{\sigma }}^{\rm{2}}}{\rm{ < }}\infty \) , by using Chebyshev’s inequality from Exercise \({\rm{44}}\) of Chapter \({\rm{3}}\). (Hint: The inequality can be rewritten in the form \({\rm{P}}\left( {\left| {{\rm{Y - }}{{\rm{\mu }}_{\rm{Y}}}} \right| \ge \in } \right) \le {\rm{\sigma }}_{\rm{Y}}^{\rm{2}}{\rm{/}} \in \). Now identify \({\rm{Y}}\) with \({\rm{\bar X}}\).)

Short Answer

Expert verified

It is proved.

\({\rm{P(|\bar X - \mu |}} \ge \in {\rm{)}} \le \frac{{{\rm{V(\bar X)}}}}{ \in }{\rm{ = }}\frac{{{{\rm{\sigma }}^{\rm{2}}}}}{{ \in {\rm{ \times }}\sqrt {\rm{n}} }} \to {\rm{0}}\)

Step by step solution

01

Define equations

A mathematical language that asserts that two algebraic expressions must be equal in nature is known as an equation.

02

Explanation

In this instance,

\({\rm{\hat \theta = \bar X}}\)

and the value of the parameter is\({\rm{\theta = \mu }}\). The question is the following true,

\({\rm{P(|\bar X - \mu |}} \ge \in {\rm{)}} \to {\rm{0}}\)

we know that\({\rm{E(\bar X) = \mu }}\)and\({\rm{V(\bar X) = }}{{\rm{\sigma }}^{\rm{2}}}{\rm{/}}\sqrt {\rm{n}} \). As a result of the Chebyshev's inequality,

\({\rm{P(|\bar X - \mu |}} \ge \in {\rm{)}} \le \frac{{{\rm{V(\bar X)}}}}{ \in }{\rm{ = }}\frac{{{{\rm{\sigma }}^{\rm{2}}}}}{{ \in {\rm{ \times }}\sqrt {\rm{n}} }} \to {\rm{0}}\)

when \({\rm{n}} \to \infty \), which brings the proof to a close.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

When the sample standard deviation S is based on a random sample from a normal population distribution, it can be shown that \({\rm{E(S) = }}\sqrt {{\rm{2/(n - 1)}}} {\rm{\Gamma (n/2)\sigma /\Gamma ((n - 1)/2)}}\)

Use this to obtain an unbiased estimator for \({\rm{\sigma }}\) of the form \({\rm{cS}}\). What is \({\rm{c}}\) when \({\rm{n = 20}}\)?

Let\({\rm{X}}\)represent the error in making a measurement of a physical characteristic or property (e.g., the boiling point of a particular liquid). It is often reasonable to assume that\({\rm{E(X) = 0}}\)and that\({\rm{X}}\)has a normal distribution. Thus, the pdf of any particular measurement error is

\({\rm{f(x;\theta ) = }}\frac{{\rm{1}}}{{\sqrt {{\rm{2\pi \theta }}} }}{{\rm{e}}^{{\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{/2\theta }}}}\quad {\rm{ - \yen < x < \yen}}\)

(Where we have used\({\rm{\theta }}\)in place of\({{\rm{\sigma }}^{\rm{2}}}\)). Now suppose that\({\rm{n}}\)independent measurements are made, resulting in measurement errors\({{\rm{X}}_{\rm{1}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{ = }}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}{\rm{ = }}{{\rm{x}}_{\rm{n}}}{\rm{.}}\)Obtain the mle of\({\rm{\theta }}\).

Let\({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\)be a random sample from a pdf\({\rm{f(x)}}\)that is symmetric about\({\rm{\mu }}\), so that\({\rm{\backslash widetildeX}}\)is an unbiased estimator of\({\rm{\mu }}\). If\({\rm{n}}\)is large, it can be shown that\({\rm{V (\tilde X)\gg 1/}}\left( {{\rm{4n(f(\mu )}}{{\rm{)}}^{\rm{2}}}} \right)\).

a. Compare\({\rm{V(\backslash widetildeX)}}\)to\({\rm{V(\bar X)}}\)when the underlying distribution is normal.

b. When the underlying pdf is Cauchy (see Example 6.7),\({\rm{V(\bar X) = \yen}}\), so\({\rm{\bar X}}\)is a terrible estimator. What is\({\rm{V(\tilde X)}}\)in this case when\({\rm{n}}\)is large?

Let \({{\rm{X}}_{\rm{1}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) be a random sample from a pdf that is symmetric about \({\rm{\mu }}\). An estimator for \({\rm{\mu }}\) that has been found to perform well for a variety of underlying distributions is the Hodges–Lehmann estimator. To define it, first compute for each \({\rm{i}} \le {\rm{j}}\) and each \({\rm{j = 1,2, \ldots ,n}}\) the pairwise average \({{\rm{\bar X}}_{{\rm{i,j}}}}{\rm{ = }}\left( {{{\rm{X}}_{\rm{i}}}{\rm{ + }}{{\rm{X}}_{\rm{j}}}} \right){\rm{/2}}\). Then the estimator is \({\rm{\hat \mu = }}\) the median of the \({{\rm{\bar X}}_{{\rm{i,j}}}}{\rm{'s}}\). Compute the value of this estimate using the data of Exercise \({\rm{44}}\) of Chapter \({\rm{1}}\). (Hint: Construct a square table with the \({{\rm{x}}_{\rm{i}}}{\rm{'s}}\) listed on the left margin and on top. Then compute averages on and above the diagonal.)

The accompanying data on flexural strength (MPa) for concrete beams of a certain type was introduced in Example 1.2.

\(\begin{array}{*{20}{r}}{{\rm{5}}{\rm{.9}}}&{{\rm{7}}{\rm{.2}}}&{{\rm{7}}{\rm{.3}}}&{{\rm{6}}{\rm{.3}}}&{{\rm{8}}{\rm{.1}}}&{{\rm{6}}{\rm{.8}}}&{{\rm{7}}{\rm{.0}}}\\{{\rm{7}}{\rm{.6}}}&{{\rm{6}}{\rm{.8}}}&{{\rm{6}}{\rm{.5}}}&{{\rm{7}}{\rm{.0}}}&{{\rm{6}}{\rm{.3}}}&{{\rm{7}}{\rm{.9}}}&{{\rm{9}}{\rm{.0}}}\\{{\rm{3}}{\rm{.2}}}&{{\rm{8}}{\rm{.7}}}&{{\rm{7}}{\rm{.8}}}&{{\rm{9}}{\rm{.7}}}&{{\rm{7}}{\rm{.4}}}&{{\rm{7}}{\rm{.7}}}&{{\rm{9}}{\rm{.7}}}\\{{\rm{7}}{\rm{.3}}}&{{\rm{7}}{\rm{.7}}}&{{\rm{11}}{\rm{.6}}}&{{\rm{11}}{\rm{.3}}}&{{\rm{11}}{\rm{.8}}}&{{\rm{10}}{\rm{.7}}}&{}\end{array}\)

Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion, and state which estimator you used\({\rm{(Hint:\Sigma }}{{\rm{x}}_{\rm{i}}}{\rm{ = 219}}{\rm{.8}}{\rm{.)}}\)

b. Calculate a point estimate of the strength value that separates the weakest 50% of all such beams from the strongest 50 %, and state which estimator you used.

c. Calculate and interpret a point estimate of the population standard deviation\({\rm{\sigma }}\). Which estimator did you use?\({\rm{(Hint:}}\left. {{\rm{\Sigma x}}_{\rm{i}}^{\rm{2}}{\rm{ = 1860}}{\rm{.94}}{\rm{.}}} \right)\)

d. Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds\({\rm{10MPa}}\). (Hint: Think of an observation as a "success" if it exceeds 10.)

e. Calculate a point estimate of the population coefficient of variation\({\rm{\sigma /\mu }}\), and state which estimator you used.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free