Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a random sample \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}.....{\rm{,}}{{\rm{X}}_{\rm{n}}}\) from the shifted exponential pdf

\({\rm{f(x;\lambda ,\theta ) = }}\left\{ {\begin{array}{*{20}{c}}{{\rm{\lambda }}{{\rm{e}}^{{\rm{ - \lambda (x - \theta )}}}}}&{{\rm{x}} \ge {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\). Taking \({\rm{\theta = 0}}\) gives the pdf of the exponential distribution considered previously (with positive density to the right of zero). An example of the shifted exponential distribution appeared in Example \({\rm{4}}{\rm{.5}}\), in which the variable of interest was time headway in traffic flow and \({\rm{\theta = }}{\rm{.5}}\) was the minimum possible time headway. a. Obtain the maximum likelihood estimators of \({\rm{\theta }}\) and \({\rm{\lambda }}\). b. If \({\rm{n = 10}}\) time headway observations are made, resulting in the values \({\rm{3}}{\rm{.11,}}{\rm{.64,2}}{\rm{.55,2}}{\rm{.20,5}}{\rm{.44,3}}{\rm{.42,10}}{\rm{.39,8}}{\rm{.93,17}}{\rm{.82}}\), and \({\rm{1}}{\rm{.30}}\), calculate the estimates of \({\rm{\theta }}\) and \({\rm{\lambda }}\).

Short Answer

Expert verified

(a) Maximum likelihood estimators are \({\rm{\hat \lambda = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{X}}_{\rm{i}}}{\rm{ - \hat \theta }}} \right)} }}\) and \({\rm{\hat \theta = min(}}{{\rm{X}}_{\rm{i}}}{\rm{)}}\).

(b) The estimates are \({\rm{\hat \theta = 0}}{\rm{.64}}\) and \({\rm{\hat \lambda = 0}}{\rm{.202}}\).

Step by step solution

01

Define exponential function

A function that increases or decays at a rate proportional to its present value is called an exponential function.

02

Explanation

(a) Allow joint pdf or pmb for random variables \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\).

\({\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{\rm{\theta }}_{\rm{1}}}{\rm{,}}{{\rm{\theta }}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{\theta }}_{\rm{m}}}} \right){\rm{, n,m}} \in {\rm{N}}\)

where \({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\) are unknown parameters. The likelihood function is defined as a function of parameters \({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\) where function f is a function of parameter. The maximum likelihood estimates (mle's), or values \(\widehat {{{\rm{\theta }}_{\rm{i}}}}\) for which the likelihood function is maximised, are the maximum likelihood estimates,

\({\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{{\rm{\hat \theta }}}_{\rm{1}}}{\rm{,}}{{{\rm{\hat \theta }}}_{\rm{2}}}{\rm{, \ldots ,}}{{{\rm{\hat \theta }}}_{\rm{m}}}} \right) \ge {\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{\rm{\theta }}_{\rm{1}}}{\rm{,}}{{\rm{\theta }}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{\theta }}_{\rm{m}}}} \right)\)

As,\({\rm{i = 1,2, \ldots ,m}}\)for every\({{\rm{\theta }}_{\rm{i}}}\). Maximum likelihood estimators are derived by replacing\({{\rm{X}}_{\rm{i}}}\)with\({{\rm{x}}_{\rm{i}}}\).

Because of the independence, the likelihood function becomes,

\(\begin{array}{c}{\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{x}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;\lambda ,\theta }}} \right){\rm{ = \lambda }}{{\rm{e}}^{{\rm{ - \lambda }}\left( {{{\rm{x}}_{\rm{1}}}{\rm{ - \theta }}} \right)}}{\rm{ \times \lambda }}{{\rm{e}}^{{\rm{ - \lambda }}\left( {{{\rm{x}}_{\rm{2}}}{\rm{ - \theta }}} \right)}}{\rm{ \times \ldots \times \lambda }}{{\rm{e}}^{{\rm{ - \lambda }}\left( {{{\rm{x}}_{\rm{n}}}{\rm{ - \theta }}} \right)}}\\{\rm{ = }}{{\rm{\lambda }}^{\rm{n}}}{{\rm{e}}^{{\rm{ - \lambda }}\sum\limits_{{\rm{i - 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} }}\end{array}\)

Look at the log likelihood function to determine the maximum.

\(\begin{array}{c}{\rm{lnf}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{x}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;\lambda ,\theta }}} \right){\rm{ = ln}}\left( {{{\rm{\lambda }}^{\rm{n}}}{{\rm{e}}^{{\rm{ - \lambda }}\sum\limits_{{\rm{i - 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} }}} \right)\\{\rm{ = nln\lambda - \lambda }}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} \end{array}\)

03

Evaluating the maximum likelihood estimators

The maximum likelihood estimator is generated by taking the derivative of the log likelihood function in regard to\({\rm{\lambda }}\)and equating it to\({\rm{0}}\).

As a result, the derivative,

\(\begin{array}{c}\frac{{\rm{d}}}{{{\rm{d\theta }}}}{\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{x}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;\lambda ,\theta }}} \right){\rm{ = }}\frac{{\rm{d}}}{{{\rm{d\lambda }}}}\left( {{\rm{nln\lambda - \lambda }}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} } \right)\\{\rm{ = n}}\frac{{\rm{1}}}{{\rm{\lambda }}}{\rm{ - }}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} \end{array}\)

As a result, solving equation provides the maximum likelihood estimator \({\rm{\hat \lambda }}\).

\(\begin{array}{c}{\rm{n}}\frac{{\rm{1}}}{{{\rm{\hat \lambda }}}}{\rm{ - }}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \hat \theta }}} \right)} {\rm{ = 0}}\\\frac{{\rm{1}}}{{{\rm{\hat \lambda }}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \hat \theta }}} \right)} \end{array}\)

For\({\rm{\hat \lambda }}\). Hence, the maximum likelihood estimator is,

\({\rm{\hat \lambda = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{X}}_{\rm{i}}}{\rm{ - \hat \theta }}} \right)} }}\)

The maximum likelihood estimator of parameter\({\rm{\theta }}\)is shown as\({\rm{\hat \theta }}\), with the estimator calculated as follows.

To find the maximum in terms\({\rm{\theta }}\)of the likelihood function,

\({{\rm{\lambda }}^{\rm{n}}}{{\rm{e}}^{{\rm{ - \lambda }}\sum\limits_{{\rm{i - 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \theta }}} \right)} }}{\rm{ = }}{{\rm{\lambda }}^{\rm{n}}}{{\rm{e}}^{{\rm{ - \lambda }}\sum\limits_{{\rm{i - 1}}}^{\rm{n}} {{{\rm{x}}_{\rm{i}}}} }}{\rm{ \times }}{{\rm{e}}^{{\rm{ - n\lambda \theta }}}}{\rm{ }}\)

it's worth noting that\({\rm{\theta }}\)only appears in the term

\({{\rm{e}}^{{\rm{ - n\lambda \theta }}}}\)

Furthermore, the likelihood function is defined only for values where all\({{\rm{x}}_{\rm{i}}}\); are greater or equal to\({\rm{\theta }}\), and where the minimum value of all\({{\rm{x}}_{\rm{i}}}\); is greater or equal to\({\rm{\theta }}\).

Because\({\rm{\theta }}\)only exists in the specified term, and the exponent\({\rm{n\lambda \theta }}\)is positive, and the likelihood function is zero for\({\rm{\theta }}\)bigger than\({\rm{min}}\left( {{{\rm{x}}_{\rm{i}}}} \right)\), the highest value is attained when

\({\rm{\hat \theta = min(}}{{\rm{X}}_{\rm{i}}}{\rm{)}}\)

04

Explanation

(b) The minimum values - the maximum likelihood estimate of \({\rm{\theta }}\) is calculated using available data.

\({\rm{\hat \theta = 0}}{\rm{.64}}\)

The fact that\({\rm{n = 10}}\)and\({\rm{\hat \theta = 0}}{\rm{.64}}\),

\(\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{{\rm{x}}_{\rm{i}}}} {\rm{ = 3}}{\rm{.11 + 0}}{\rm{.64 + \ldots + 1}}{\rm{.3 = 55}}{\rm{.8}}\)

The maximum likelihood estimates of\({\rm{\lambda }}\)is,

\(\begin{array}{c}{\rm{\hat \lambda = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \hat \theta }}} \right)} }}\\{\rm{ = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{{\rm{x}}_{\rm{i}}}} {\rm{ - n\hat \theta }}}}\\{\rm{ = }}\frac{{{\rm{10}}}}{{{\rm{55}}{\rm{.8 - 6}}{\rm{.4}}}}\\{\rm{ = 0}}{\rm{.202}}\end{array}\)

Therefore, \({\rm{\hat \lambda = 0}}{\rm{.202}}\) and \({\rm{\hat \theta = 0}}{\rm{.64}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. A random sample of 10 houses in a particular area, each of which is heated with natural gas, is selected and the amount of gas (therms) used during the month of January is determined for each house. The resulting observations are 103, 156, 118, 89, 125, 147, 122, 109, 138, 99. Let m denote the average gas usage during January by all houses in this area. Compute a point estimate of m. b. Suppose there are 10,000 houses in this area that use natural gas for heating. Let t denote the total amount of gas used by all of these houses during January. Estimate t using the data of part (a). What estimator did you use in computing your estimate? c. Use the data in part (a) to estimate p, the proportion of all houses that used at least 100 therms. d. Give a point estimate of the population median usage (the middle value in the population of all houses) based on the sample of part (a). What estimator did you use?

Each of 150 newly manufactured items is examined and the number of scratches per item is recorded (the items are supposed to be free of scratches), yielding the following data:

Assume that X has a Poisson distribution with parameter \({\bf{\mu }}.\)and that X represents the number of scratches on a randomly picked item.

a. Calculate the estimate for the data using an unbiased \({\bf{\mu }}.\)estimator. (Hint: for X Poisson, \({\rm{E(X) = \mu }}\) ,therefore \({\rm{E(\bar X) = ?)}}\)

c. What is your estimator's standard deviation (standard error)? Calculate the standard error estimate. (Hint: \({\rm{\sigma }}_{\rm{X}}^{\rm{2}}{\rm{ = \mu }}\), \({\rm{X}}\))

Each of \({\rm{n}}\) specimens is to be weighed twice on the same scale. Let \({{\rm{X}}_{\rm{i}}}\) and \({{\rm{Y}}_{\rm{i}}}\) denote the two observed weights for the \({\rm{ith}}\) specimen. Suppose\({{\rm{X}}_{\rm{i}}}\) and \({{\rm{Y}}_{\rm{i}}}\) are independent of one another, each normally distributed with mean value \({{\rm{\mu }}_{\rm{i}}}\) (the true weight of specimen \({\rm{i}}\)) and variance \({{\rm{\sigma }}^{\rm{2}}}\) . a. Show that the maximum likelihood estimator of \({{\rm{\sigma }}^{\rm{2}}}\) is \({\widehat {\rm{\sigma }}^{\rm{2}}}{\rm{ = \Sigma }}{\left( {{{\rm{X}}_{\rm{i}}}{\rm{ - }}{{\rm{Y}}_{\rm{i}}}} \right)^{\rm{2}}}{\rm{/(4n)}}\). (Hint: If \({\rm{\bar z = }}\left( {{{\rm{z}}_{\rm{1}}}{\rm{ + }}{{\rm{z}}_{\rm{2}}}} \right){\rm{/2}}\), then \({\rm{\Sigma }}{\left( {{{\rm{z}}_{\rm{i}}}{\rm{ - \bar z}}} \right)^{\rm{2}}}{\rm{ = }}{\left( {{{\rm{z}}_{\rm{1}}}{\rm{ - }}{{\rm{z}}_{\rm{2}}}} \right)^{\rm{2}}}{\rm{/2}}\)) b. Is the mle \({{\rm{\hat \sigma }}^{\rm{2}}}\) an unbiased estimator of \({{\rm{\sigma }}^{\rm{2}}}\)? Find an unbiased estimator of \({{\rm{\sigma }}^{\rm{2}}}\). (Hint: For any \({\rm{rv Z,E}}\left( {{{\rm{Z}}^{\rm{2}}}} \right){\rm{ = V(Z) + (E(Z)}}{{\rm{)}}^{\rm{2}}}\). Apply this to \({\rm{Z = }}{{\rm{X}}_{\rm{i}}}{\rm{ - }}{{\rm{Y}}_{\rm{i}}}\).)

The shear strength of each of ten test spot welds is determined, yielding the following data (psi):

\(\begin{array}{*{20}{l}}{{\rm{392}}}&{{\rm{376}}}&{{\rm{401}}}&{{\rm{367}}}&{{\rm{389}}}&{{\rm{362}}}&{{\rm{409}}}&{{\rm{415}}}&{{\rm{358}}}&{{\rm{375}}}\end{array}\)

a. Assuming that shear strength is normally distributed, estimate the true average shear strength and standard deviation of shear strength using the method of maximum likelihood.

b. Again assuming a normal distribution, estimate the strength value below which\({\rm{95\% }}\)of all welds will have their strengths. (Hint: What is the\({\rm{95 th}}\)percentile in terms of\({\rm{\mu }}\)and\({\rm{\sigma }}\)? Now use the invariance principle.)

c. Suppose we decide to examine another test spot weld. Let\({\rm{X = }}\)shear strength of the weld. Use the given data to obtain the mle of\({\rm{P(Xยฃ400)}}{\rm{.(Hint:P(Xยฃ400) = \Phi ((400 - \mu )/\sigma )}}{\rm{.)}}\)

Let\({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\)represent a random sample from a Rayleigh distribution with pdf

\({\rm{f(x,\theta ) = }}\frac{{\rm{x}}}{{\rm{\theta }}}{{\rm{e}}^{{\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{/(2\theta )}}}}\quad {\rm{x > 0}}\)a. It can be shown that\({\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right){\rm{ = 2\theta }}\). Use this fact to construct an unbiased estimator of\({\rm{\theta }}\)based on\({\rm{\Sigma X}}_{\rm{i}}^{\rm{2}}\)(and use rules of expected value to show that it is unbiased).

b. Estimate\({\rm{\theta }}\)from the following\({\rm{n = 10}}\)observations on vibratory stress of a turbine blade under specified conditions:

\(\begin{array}{*{20}{l}}{{\rm{16}}{\rm{.88}}}&{{\rm{10}}{\rm{.23}}}&{{\rm{4}}{\rm{.59}}}&{{\rm{6}}{\rm{.66}}}&{{\rm{13}}{\rm{.68}}}\\{{\rm{14}}{\rm{.23}}}&{{\rm{19}}{\rm{.87}}}&{{\rm{9}}{\rm{.40}}}&{{\rm{6}}{\rm{.51}}}&{{\rm{10}}{\rm{.95}}}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free