Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider randomly selecting \({\rm{n}}\) segments of pipe and determining the corrosion loss (mm) in the wall thickness for each one. Denote these corrosion losses by \({{\rm{Y}}_{\rm{1}}}{\rm{,}}.....{\rm{,}}{{\rm{Y}}_{\rm{n}}}\). The article “A Probabilistic Model for a Gas Explosion Due to Leakages in the Grey Cast Iron Gas Mains” (Reliability Engr. and System Safety (\({\rm{(2013:270 - 279)}}\)) proposes a linear corrosion model: \({{\rm{Y}}_{\rm{i}}}{\rm{ = }}{{\rm{t}}_{\rm{i}}}{\rm{R}}\), where \({{\rm{t}}_{\rm{i}}}\) is the age of the pipe and \({\rm{R}}\), the corrosion rate, is exponentially distributed with parameter \({\rm{\lambda }}\). Obtain the maximum likelihood estimator of the exponential parameter (the resulting mle appears in the cited article). (Hint: If \({\rm{c > 0}}\) and \({\rm{X}}\) has an exponential distribution, so does \({\rm{cX}}\).)

Short Answer

Expert verified

The maximum likelihood estimator is \({\rm{\hat \lambda = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {{{\rm{Y}}_{\rm{j}}}} {\rm{/}}{{\rm{t}}_{\rm{j}}}}}\).

Step by step solution

01

Define exponential function

A function that increases or decays at a rate proportional to its present value is called an exponential function.

02

Explanation

Given a set of random variables,

\({{\rm{Y}}_{\rm{i}}}{\rm{ = }}{{\rm{t}}_{\rm{i}}}{\rm{R}}\)

where\({{\rm{t}}_{\rm{i}}}\)is an integer and\({\rm{R}}\)is an exponentially distributed random variable with parameters\({\rm{\lambda }}\). The\({{\rm{Y}}_{\rm{i}}}\)cdf is,

\(\begin{array}{c}{{\rm{F}}_{{{\rm{Y}}_{\rm{i}}}}}{\rm{(y) = P}}\left( {{{\rm{Y}}_{\rm{i}}} \le {\rm{y}}} \right)\\{\rm{ = P}}\left( {{{\rm{t}}_{\rm{i}}}{\rm{R}} \le {\rm{y}}} \right)\\{\rm{ = P}}\left( {{\rm{R}} \le \frac{{\rm{y}}}{{{{\rm{t}}_{\rm{i}}}}}} \right)\\{\rm{ = }}{{\rm{F}}_{\rm{R}}}\left( {\frac{{\rm{y}}}{{{{\rm{t}}_{\rm{i}}}}}} \right)\\{\rm{ = 1 - exp}}\left\{ {{\rm{ - \lambda }}\frac{{\rm{y}}}{{{{\rm{t}}_{\rm{i}}}}}} \right\}\\{\rm{ = 1 - exp}}\left\{ {{\rm{ - }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{i}}}}}{\rm{y}}} \right\}{\rm{,y}} \ge {\rm{0}}\end{array}\)

For\({\rm{y < 0}}\), and is zero. As a result,\({{\rm{Y}}_{\rm{i}}}\); has a parametric exponential distribution.

\({{\rm{\lambda }}_{\rm{i}}}{\rm{ = }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{i}}}}}\)

Allow joint pdf or pmb for random variables \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\).

\({\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{\rm{\theta }}_{\rm{1}}}{\rm{,}}{{\rm{\theta }}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{\theta }}_{\rm{m}}}} \right){\rm{, n,m}} \in {\rm{N}}\)

where\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\)are unknown parameters. The likelihood function is defined as a function of parameters\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\)where function f is a function of parameter. The maximum likelihood estimates (mle's), or values\(\widehat {{{\rm{\theta }}_{\rm{i}}}}\)for which the likelihood function is maximised, are the maximum likelihood estimates,

\({\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{{\rm{\hat \theta }}}_{\rm{1}}}{\rm{,}}{{{\rm{\hat \theta }}}_{\rm{2}}}{\rm{, \ldots ,}}{{{\rm{\hat \theta }}}_{\rm{m}}}} \right) \ge {\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{\rm{\theta }}_{\rm{1}}}{\rm{,}}{{\rm{\theta }}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{\theta }}_{\rm{m}}}} \right)\)

As, \({\rm{i = 1,2, \ldots ,m}}\) for every \({{\rm{\theta }}_{\rm{i}}}\). Maximum likelihood estimators are derived by replacing \({{\rm{X}}_{\rm{i}}}\) with \({{\rm{x}}_{\rm{i}}}\).

03

Evaluating the maximum likelihood estimators

Because of the independence, the likelihood function becomes,

\(\begin{array}{c}{\rm{f}}\left( {{{\rm{y}}_{\rm{1}}}{\rm{,}}{{\rm{y}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{y}}_{\rm{n}}}{\rm{;\lambda }}} \right){\rm{ = }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{1}}}}}{\rm{exp}}\left\{ {{\rm{ - }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{1}}}}}{{\rm{y}}_{\rm{1}}}} \right\}{\rm{ \times }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{2}}}}}{\rm{exp}}\left\{ {{\rm{ - }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{2}}}}}{{\rm{y}}_{\rm{2}}}} \right\}{\rm{ \times \ldots \times }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{n}}}}}{\rm{exp}}\left\{ {{\rm{ - }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{n}}}}}{{\rm{y}}_{\rm{n}}}} \right\}\\{\rm{ = }}{{\rm{\lambda }}^{\rm{n}}}\prod\limits_{{\rm{i = 1}}}^{\rm{n}} {\frac{{\rm{1}}}{{{{\rm{t}}_{\rm{i}}}}}} {\rm{ \times exp}}\left\{ {{\rm{ - }}\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{i}}}}}{{\rm{y}}_{\rm{i}}}} \right\}\\{\rm{ = }}{{\rm{\lambda }}^{\rm{n}}}\left( {\prod\limits_{{\rm{i = 1}}}^{\rm{n}} {\frac{{\rm{1}}}{{{{\rm{t}}_{\rm{i}}}}}} } \right){\rm{ \times exp}}\left\{ {{\rm{ - }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{j}}}}}} {{\rm{y}}_{\rm{j}}}} \right\}\\{\rm{ = }}{{\rm{\lambda }}^{\rm{n}}}{\rm{ \times p \times exp}}\left\{ {{\rm{ - \lambda }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} } \right\}\end{array}\)

Where,\({\rm{p = }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{\rm{\lambda }}}{{{{\rm{t}}_{\rm{j}}}}}} \).

Look at the log likelihood function to determine the maximum.

\(\begin{array}{c}{\rm{lnf}}\left( {{{\rm{y}}_{\rm{1}}}{\rm{,}}{{\rm{y}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{y}}_{\rm{n}}}{\rm{;\lambda }}} \right){\rm{ = ln}}\left( {{{\rm{\lambda }}^{\rm{n}}}{\rm{ \times p \times exp}}\left\{ {{\rm{ - \lambda }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} } \right\}} \right)\\{\rm{ = n \times ln\lambda + lnp - \lambda }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} \end{array}\)

The maximum likelihood estimator is generated by taking the derivative of the log likelihood function in regard to\({\rm{\lambda }}\)and equating it to\({\rm{0}}\).

As a result, the derivative,

\(\begin{array}{c}\frac{{\rm{d}}}{{{\rm{d\lambda }}}}{\rm{f}}\left( {{{\rm{y}}_{\rm{1}}}{\rm{,}}{{\rm{y}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{y}}_{\rm{n}}}{\rm{;\lambda }}} \right){\rm{ = }}\frac{{\rm{d}}}{{{\rm{d\lambda }}}}\left( {{\rm{n \times ln\lambda + lnp - \lambda }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} } \right)\\{\rm{ = }}\frac{{\rm{n}}}{{\rm{\lambda }}}{\rm{ + 0 - }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} \\{\rm{ = }}\frac{{\rm{n}}}{{\rm{\lambda }}}{\rm{ - }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} \end{array}\)

As a result, solving equation provides the maximum likelihood estimator.

\(\begin{array}{c}\frac{{\rm{n}}}{{{\rm{\hat \lambda }}}}{\rm{ - }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} {\rm{ = 0}}\\\frac{{\rm{n}}}{{{\rm{\hat \lambda }}}}{\rm{ = }}\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {\frac{{{{\rm{y}}_{\rm{j}}}}}{{{{\rm{t}}_{\rm{j}}}}}} \end{array}\)

for\({\rm{\hat \lambda }}\). Hence, the maximum likelihood estimator is,

\({\rm{\hat \lambda = }}\frac{{\rm{n}}}{{\sum\limits_{{\rm{j = 1}}}^{\rm{n}} {{{\rm{Y}}_{\rm{j}}}} {\rm{/}}{{\rm{t}}_{\rm{j}}}}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. Let \({{\rm{X}}_{\rm{1}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) be a random sample from a uniform distribution on \({\rm{(0,\theta )}}\). Then the mle of \({\rm{\theta }}\) is \({\rm{\hat \theta = Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\). Use the fact that \({\rm{Y}} \le {\rm{y}}\) if each \({{\rm{X}}_{\rm{i}}} \le {\rm{y}}\) to derive the cdf of Y. Then show that the pdf of \({\rm{Y = max}}\left( {{{\rm{X}}_{\rm{i}}}} \right)\) is \({{\rm{f}}_{\rm{Y}}}{\rm{(y) = }}\left\{ {\begin{array}{*{20}{c}}{\frac{{{\rm{n}}{{\rm{y}}^{{\rm{n - 1}}}}}}{{{{\rm{\theta }}^{\rm{n}}}}}}&{{\rm{0}} \le {\rm{y}} \le {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

b. Use the result of part (a) to show that the mle is biased but that \({\rm{(n + 1)}}\)\({\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{/n}}\) is unbiased.

a. A random sample of 10 houses in a particular area, each of which is heated with natural gas, is selected and the amount of gas (therms) used during the month of January is determined for each house. The resulting observations are 103, 156, 118, 89, 125, 147, 122, 109, 138, 99. Let m denote the average gas usage during January by all houses in this area. Compute a point estimate of m. b. Suppose there are 10,000 houses in this area that use natural gas for heating. Let t denote the total amount of gas used by all of these houses during January. Estimate t using the data of part (a). What estimator did you use in computing your estimate? c. Use the data in part (a) to estimate p, the proportion of all houses that used at least 100 therms. d. Give a point estimate of the population median usage (the middle value in the population of all houses) based on the sample of part (a). What estimator did you use?

Let\({\rm{X}}\)represent the error in making a measurement of a physical characteristic or property (e.g., the boiling point of a particular liquid). It is often reasonable to assume that\({\rm{E(X) = 0}}\)and that\({\rm{X}}\)has a normal distribution. Thus, the pdf of any particular measurement error is

\({\rm{f(x;\theta ) = }}\frac{{\rm{1}}}{{\sqrt {{\rm{2\pi \theta }}} }}{{\rm{e}}^{{\rm{ - }}{{\rm{x}}^{\rm{2}}}{\rm{/2\theta }}}}\quad {\rm{ - \yen < x < \yen}}\)

(Where we have used\({\rm{\theta }}\)in place of\({{\rm{\sigma }}^{\rm{2}}}\)). Now suppose that\({\rm{n}}\)independent measurements are made, resulting in measurement errors\({{\rm{X}}_{\rm{1}}}{\rm{ = }}{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{ = }}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}{\rm{ = }}{{\rm{x}}_{\rm{n}}}{\rm{.}}\)Obtain the mle of\({\rm{\theta }}\).

In a random sample of 80 components of a certain type, 12 are found to be defective.

a. Give a point estimate of the proportion of all such components that are not defective.

b. A system is to be constructed by randomly selecting two of these components and connecting them in series, as shown here.

The series connection implies that the system will function if and only if neither component is defective (i.e., both components work properly). Estimate the proportion of all such systems that work properly. (Hint: If p denotes the probability that a component works properly, how can P (system works) be expressed in terms of p ?)

Of \({{\rm{n}}_{\rm{1}}}\)randomly selected male smokers, \({{\rm{X}}_{\rm{1}}}\) smoked filter cigarettes, whereas of \({{\rm{n}}_{\rm{2}}}\) randomly selected female smokers, \({{\rm{X}}_{\rm{2}}}\) smoked filter cigarettes. Let \({{\rm{p}}_{\rm{1}}}\) and \({{\rm{p}}_{\rm{2}}}\) denote the probabilities that a randomly selected male and female, respectively, smoke filter cigarettes.

a. Show that \({\rm{(}}{{\rm{X}}_{\rm{1}}}{\rm{/}}{{\rm{n}}_{\rm{1}}}{\rm{) - (}}{{\rm{X}}_{\rm{2}}}{\rm{/}}{{\rm{n}}_{\rm{2}}}{\rm{)}}\) is an unbiased estimator for \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\). (Hint: \({\rm{E(}}{{\rm{X}}_{\rm{i}}}{\rm{) = }}{{\rm{n}}_{\rm{i}}}{{\rm{p}}_{\rm{i}}}\) for \({\rm{i = 1,2}}\).)

b. What is the standard error of the estimator in part (a)?

c. How would you use the observed values \({{\rm{x}}_{\rm{1}}}\) and \({{\rm{x}}_{\rm{2}}}\) to estimate the standard error of your estimator?

d. If \({{\rm{n}}_{\rm{1}}}{\rm{ = }}{{\rm{n}}_{\rm{2}}}{\rm{ = 200, }}{{\rm{x}}_{\rm{1}}}{\rm{ = 127}}\), and \({{\rm{x}}_{\rm{2}}}{\rm{ = 176}}\), use the estimator of part (a) to obtain an estimate of \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\).

e. Use the result of part (c) and the data of part (d) to estimate the standard error of the estimator.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free