Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The shear strength of each of ten test spot welds is determined, yielding the following data (psi):

\(\begin{array}{*{20}{l}}{{\rm{392}}}&{{\rm{376}}}&{{\rm{401}}}&{{\rm{367}}}&{{\rm{389}}}&{{\rm{362}}}&{{\rm{409}}}&{{\rm{415}}}&{{\rm{358}}}&{{\rm{375}}}\end{array}\)

a. Assuming that shear strength is normally distributed, estimate the true average shear strength and standard deviation of shear strength using the method of maximum likelihood.

b. Again assuming a normal distribution, estimate the strength value below which\({\rm{95\% }}\)of all welds will have their strengths. (Hint: What is the\({\rm{95 th}}\)percentile in terms of\({\rm{\mu }}\)and\({\rm{\sigma }}\)? Now use the invariance principle.)

c. Suppose we decide to examine another test spot weld. Let\({\rm{X = }}\)shear strength of the weld. Use the given data to obtain the mle of\({\rm{P(X£400)}}{\rm{.(Hint:P(X£400) = \Phi ((400 - \mu )/\sigma )}}{\rm{.)}}\)

Short Answer

Expert verified

a) The maximum likelihood estimates of mean value and maximum likelihood estimate of standard deviation is \({\rm{\hat \mu = 384}}{\rm{.4, \hat \sigma = 18}}{\rm{.86}}{\rm{.}}\)

b) The estimate would be a function the estimates or equality \({\rm{\hat \mu + 1}}{\rm{.645 \times \hat \sigma = 415}}{\rm{.42}}\)

c) The mle of the given data is\({\rm{P(X£400) = 0}}{\rm{.7967}}\).

Step by step solution

01

Introduction

An estimator is a rule for computing an estimate of a given quantity based on observable data: the rule (estimator), the quantity of interest (estimate), and the output (estimate) are all distinct.

02

Explanation

a)

The maximum likelihood estimators for \({\rm{\mu }}\)and\({{\rm{\sigma }}^{\rm{2}}}\), when assuming normality, are

\({\rm{\hat \mu = \bar X,}}\)

and

\(\widehat {{{\rm{\sigma }}^{\rm{2}}}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{n}}}\sum\limits_{{\rm{i = 1}}}^{\rm{n}} {{{\left( {{{\rm{x}}_{\rm{i}}}{\rm{ - \bar X}}} \right)}^{\rm{2}}}} \)

Therefore, the maximum likelihood estimates of mean value

\({\rm{\hat \mu = }}\frac{{\rm{1}}}{{{\rm{10}}}}{\rm{(392 + 376 + \ldots + 375) = 384}}{\rm{.4}}{\rm{.}}\)

the maximum likelihood estimate of variance is

\(\begin{array}{c}\widehat {{{\rm{\sigma }}^{\rm{2}}}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{10}}}}\left( {{{{\rm{(392 - 384}}{\rm{.4)}}}^{\rm{2}}}{\rm{ + (376 - 384}}{\rm{.4}}{{\rm{)}}^{\rm{2}}}{\rm{ + \ldots + (375 - 384}}{\rm{.4}}{{\rm{)}}^{\rm{2}}}} \right)\\{\rm{ = }}\frac{{\rm{1}}}{{{\rm{10}}}}{\rm{(57}}{\rm{.76 + 70}}{\rm{.56 + \ldots + 88}}{\rm{.36)}}\\{\rm{ = 355}}{\rm{.65}}\end{array}\)

and maximum likelihood estimate of standard deviation is

\({\rm{\hat \sigma = }}\sqrt {{\rm{355}}{\rm{.65}}} {\rm{ = 18}}{\rm{.86}}\)

Note that the mle of standard deviation differs from the sample standard deviation\({\rm{s}}\)!

03

Explanation

b)

The \({95^{{\rm{th }}}}\)percentile in terms of \(\mu \)and \(\sigma \)is

\({\rm{\mu + }}{{\rm{z}}_{{\rm{1 - 0}}{\rm{.05}}}}{\rm{\sigma }}\)

Where \({{\rm{z}}_{{\rm{1 - 0}}{\rm{.05}}}}\)is \({\rm{z - }}\)score which can be found in the appendix, the standard normal distribution and

\({{\rm{z}}_{{\rm{1 - 0}}{\rm{.05}}}}{\rm{ = 1}}{\rm{.645}}\)The Invariance Principle:

Let \({{\rm{\hat \theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}\)be maximum likelihood estimates of parameters\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}\).

The mle of any function of parameters \({{\rm{\theta }}_{\rm{i}}}\)is the function of the mle's\({{\rm{\hat \theta }}_{\rm{i}}}\).

Since, \({\rm{\mu + }}{{\rm{z}}_{{\rm{1 - 0}}{\rm{.05}}}}{\rm{\sigma }}\) is a function of parameters, the estimate would be a function the estimates or equality

\(\begin{array}{l}{\rm{\hat \mu + 1}}{\rm{.645 \times \hat \sigma = 384}}{\rm{.4 + 1}}{\rm{.645 \times 18}}{\rm{.86}}\\{\rm{ = 415}}{\rm{.42}}\end{array}\)

Where \({\rm{\hat \mu }}\)and \({\rm{\hat \sigma }}\)are maximum likelihood estimates computed in\({\rm{(a)}}\).

04

Explanation

c)

The Invariance Principle:

Let \({{\rm{\hat \theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}\)be maximum likelihood estimates of parameters \({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}{\rm{.}}\)The mle of any function of parameters \({{\rm{\theta }}_{\rm{i}}}\)is the function of the mle's\({{\rm{\hat \theta }}_{\rm{i}}}\).

Therefore, by the invariance principle, the maximum likelihood estimates of function \({\rm{P(X£400)}}\)is

\(\begin{array}{c}{\rm{P(X£400) = P}}\left( {\frac{{{\rm{X - \hat \mu }}}}{{{\rm{\hat \sigma }}}}{\rm{£}}\frac{{{\rm{400 - 384}}{\rm{.4}}}}{{{\rm{18}}{\rm{.86}}}}} \right)\\{\rm{ = P(Z£0}}{\rm{.83)}}\\{\rm{ = \Phi (0}}{\rm{.83)}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{0}}{\rm{.7967,}}\end{array}\)

(1): From the appendix's normal probability table a programmer can also be used to calculate the probability.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The mean squared error of an estimator \({\rm{\hat \theta }}\) is \({\rm{MSE(\hat \theta ) = E(\hat \theta - \hat \theta }}{{\rm{)}}^{\rm{2}}}\). If \({\rm{\hat \theta }}\) is unbiased, then \({\rm{MSE(\hat \theta ) = V(\hat \theta )}}\), but in general \({\rm{MSE(\hat \theta ) = V(\hat \theta ) + (bias}}{{\rm{)}}^{\rm{2}}}\) . Consider the estimator \({{\rm{\hat \sigma }}^{\rm{2}}}{\rm{ = K}}{{\rm{S}}^{\rm{2}}}\), where \({{\rm{S}}^{\rm{2}}}{\rm{ = }}\) sample variance. What value of K minimizes the mean squared error of this estimator when the population distribution is normal? (Hint: It can be shown that \({\rm{E}}\left( {{{\left( {{{\rm{S}}^{\rm{2}}}} \right)}^{\rm{2}}}} \right){\rm{ = (n + 1)}}{{\rm{\sigma }}^{\rm{4}}}{\rm{/(n - 1)}}\) In general, it is difficult to find \({\rm{\hat \theta }}\) to minimize \({\rm{MSE(\hat \theta )}}\), which is why we look only at unbiased estimators and minimize \({\rm{V(\hat \theta )}}\).)

a. A random sample of 10 houses in a particular area, each of which is heated with natural gas, is selected and the amount of gas (therms) used during the month of January is determined for each house. The resulting observations are 103, 156, 118, 89, 125, 147, 122, 109, 138, 99. Let m denote the average gas usage during January by all houses in this area. Compute a point estimate of m. b. Suppose there are 10,000 houses in this area that use natural gas for heating. Let t denote the total amount of gas used by all of these houses during January. Estimate t using the data of part (a). What estimator did you use in computing your estimate? c. Use the data in part (a) to estimate p, the proportion of all houses that used at least 100 therms. d. Give a point estimate of the population median usage (the middle value in the population of all houses) based on the sample of part (a). What estimator did you use?

A diagnostic test for a certain disease is applied to\({\rm{n}}\)individuals known to not have the disease. Let\({\rm{X = }}\)the number among the\({\rm{n}}\)test results that are positive (indicating presence of the disease, so\({\rm{X}}\)is the number of false positives) and\({\rm{p = }}\)the probability that a disease-free individual's test result is positive (i.e.,\({\rm{p}}\)is the true proportion of test results from disease-free individuals that are positive). Assume that only\({\rm{X}}\)is available rather than the actual sequence of test results.

a. Derive the maximum likelihood estimator of\({\rm{p}}\). If\({\rm{n = 20}}\)and\({\rm{x = 3}}\), what is the estimate?

b. Is the estimator of part (a) unbiased?

c. If\({\rm{n = 20}}\)and\({\rm{x = 3}}\), what is the mle of the probability\({{\rm{(1 - p)}}^{\rm{5}}}\)that none of the next five tests done on disease-free individuals are positive?

Let\({\rm{X}}\)denote the proportion of allotted time that a randomly selected student spends working on a certain aptitude test. Suppose the pdf of\({\rm{X}}\)is

\({\rm{f(x;\theta ) = }}\left\{ {\begin{array}{*{20}{c}}{{\rm{(\theta + 1)}}{{\rm{x}}^{\rm{\theta }}}}&{{\rm{0£ x£ 1}}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

where\({\rm{ - 1 < \theta }}\). A random sample of ten students yields data\({{\rm{x}}_{\rm{1}}}{\rm{ = }}{\rm{.92,}}{{\rm{x}}_{\rm{2}}}{\rm{ = }}{\rm{.79,}}{{\rm{x}}_{\rm{3}}}{\rm{ = }}{\rm{.90,}}{{\rm{x}}_{\rm{4}}}{\rm{ = }}{\rm{.65,}}{{\rm{x}}_{\rm{5}}}{\rm{ = }}{\rm{.86}}\),\({{\rm{x}}_{\rm{6}}}{\rm{ = }}{\rm{.47,}}{{\rm{x}}_{\rm{7}}}{\rm{ = }}{\rm{.73,}}{{\rm{x}}_{\rm{8}}}{\rm{ = }}{\rm{.97,}}{{\rm{x}}_{\rm{9}}}{\rm{ = }}{\rm{.94,}}{{\rm{x}}_{{\rm{10}}}}{\rm{ = }}{\rm{.77}}\).

a. Use the method of moments to obtain an estimator of\({\rm{\theta }}\), and then compute the estimate for this data.

b. Obtain the maximum likelihood estimator of\({\rm{\theta }}\), and then compute the estimate for the given data.

Let\({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\)be a random sample from a pdf\({\rm{f(x)}}\)that is symmetric about\({\rm{\mu }}\), so that\({\rm{\backslash widetildeX}}\)is an unbiased estimator of\({\rm{\mu }}\). If\({\rm{n}}\)is large, it can be shown that\({\rm{V (\tilde X)\gg 1/}}\left( {{\rm{4n(f(\mu )}}{{\rm{)}}^{\rm{2}}}} \right)\).

a. Compare\({\rm{V(\backslash widetildeX)}}\)to\({\rm{V(\bar X)}}\)when the underlying distribution is normal.

b. When the underlying pdf is Cauchy (see Example 6.7),\({\rm{V(\bar X) = \yen}}\), so\({\rm{\bar X}}\)is a terrible estimator. What is\({\rm{V(\tilde X)}}\)in this case when\({\rm{n}}\)is large?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free