Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A diagnostic test for a certain disease is applied to\({\rm{n}}\)individuals known to not have the disease. Let\({\rm{X = }}\)the number among the\({\rm{n}}\)test results that are positive (indicating presence of the disease, so\({\rm{X}}\)is the number of false positives) and\({\rm{p = }}\)the probability that a disease-free individual's test result is positive (i.e.,\({\rm{p}}\)is the true proportion of test results from disease-free individuals that are positive). Assume that only\({\rm{X}}\)is available rather than the actual sequence of test results.

a. Derive the maximum likelihood estimator of\({\rm{p}}\). If\({\rm{n = 20}}\)and\({\rm{x = 3}}\), what is the estimate?

b. Is the estimator of part (a) unbiased?

c. If\({\rm{n = 20}}\)and\({\rm{x = 3}}\), what is the mle of the probability\({{\rm{(1 - p)}}^{\rm{5}}}\)that none of the next five tests done on disease-free individuals are positive?

Short Answer

Expert verified

a) The estimated valueis\({\rm{\hat p = }}\frac{{\rm{X}}}{{\rm{n}}}{\rm{;\hat p = 0}}{\rm{.15}}\).

b) Estimator is unbiased.

c) The probability is\({\rm{h(\hat p) = 0}}{\rm{.4437}}\).

Step by step solution

01

Introduction

An estimator is a rule for computing an estimate of a given quantity based on observable data: the rule (estimator), the quantity of interest (estimate), and the output (estimate) are all distinct.

02

Explanation

a)

Let random variables \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) have joint pdf or pmb

\({\rm{f}}\left( {{{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}{\rm{;}}{{\rm{\theta }}_{\rm{1}}}{\rm{,}}{{\rm{\theta }}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{\theta }}_{\rm{m}}}} \right){\rm{,}}\quad {\rm{n,m\^I N}}\)

Where the parameters \({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\)are unknown. When function \({\rm{f}}\)is a function of parameters\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\), it is called the

likelihood function

Values \({{\rm{\hat \theta }}_{\rm{i}}}\)that maximize the likelihood function are the maximum likelihood estimates (mle's), or equally values \({{\rm{\hat \theta }}_{\rm{i}}}\)for which

\(f\left( {{x_1},{x_2}, \ldots ,{x_n};{{\hat \theta }_1},{{\hat \theta }_2}, \ldots ,{{\hat \theta }_m}} \right)f\left( {{x_1},{x_2}, \ldots ,{x_n};{\theta _1},{\theta _2}, \ldots ,{\theta _m}} \right),\)

For every\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,m}}\). By substituting\({{\rm{X}}_{\rm{i}}}{\rm{ with }}{{\rm{x}}_{\rm{i}}}\), the

maximum likelihood estimators

are obtained.

First, notice that the random variable \({\rm{X}}\)has Binomial distribution with pdf given in the theorem below.

Theorem:

\({\rm{b(x;n,p) = }}\left\{ {\begin{array}{*{20}{l}}{\left( {\begin{array}{*{20}{l}}{\rm{n}}\\{\rm{x}}\end{array}} \right){{\rm{p}}^{\rm{x}}}{{{\rm{(1 - p)}}}^{{\rm{n - x}}}}}&{{\rm{,x = 0,1,2, \ldots ,n}}}\\{\rm{0}}&{{\rm{, otherwise }}}\end{array}} \right.\)

In order to obtain the maximum likelihood estimator, one needs to find \({\rm{p}}\)which maximizes pmf. To do that, look at natural logarithm of the pmf. By finding maximum of

\({\rm{ln}}\left( {\left( {\begin{array}{*{20}{l}}{\rm{n}}\\{\rm{x}}\end{array}} \right){{\rm{p}}^{\rm{x}}}{{{\rm{(1 - p)}}}^{{\rm{n - x}}}}} \right)\)

One also finds the maximum of\({{\rm{p}}^{\rm{x}}}{{\rm{(1 - p)}}^{{\rm{n - x}}}}\)because natural logarithm won't change the maximum value. To find maximum of\({\rm{lnb(x;n,p)}}\), first take the derivative and then set it to be equal to zero (classic method for finding maximum), and then solve for\({\rm{p}}\).

03

Calculation

(a)

The derivative is:

\(\begin{aligned}\frac{{\rm{d}}}{{{\rm{dp}}}}\left( {{\rm{ln}}\left( {\left( {\begin{array}{*{20}{l}}{\rm{n}}\\{\rm{x}}\end{array}} \right){{\rm{p}}^{\rm{x}}}{{{\rm{(1 - p)}}}^{{\rm{n - x}}}}} \right)} \right)\\ &= \frac{{\rm{d}}}{{{\rm{dp}}}}\left( {{\rm{ln}}\left( {\begin{array}{*{20}{l}}{\rm{n}}\\{\rm{x}}\end{array}} \right){\rm{ + xlnp + (n - x)ln(1 - p)}}} \right)\\ & = 0 + x \times \frac{{\rm{1}}}{{\rm{p}}}{\rm{ + (n - x) \times }}\frac{{\rm{1}}}{{{\rm{1 - p}}}}{\rm{ \times ( - 1)}}\\ &= \frac{{\rm{x}}}{{\rm{p}}}{\rm{ - }}\frac{{{\rm{n - x}}}}{{{\rm{1 - p}}}}\end{aligned}\)

Set it to be equal to zero in order to find maximum

\(\frac{{\rm{x}}}{{\rm{p}}}{\rm{ - }}\frac{{{\rm{n - x}}}}{{{\rm{1 - p}}}}{\rm{ = 0}}\)

And now solve for \({\rm{p}}\)

\(\begin{aligned}\frac{{\rm{x}}}{{{\rm{\hat p}}}}{\rm{ - }}\frac{{{\rm{n - x}}}}{{{\rm{1 - \hat p}}}}\\ &= 0 \frac{{\rm{x}}}{{{\rm{\hat p}}}}\\ &= \frac{{{\rm{n - x}}}}{{{\rm{1 - \hat p}}}}\frac{{{\rm{1 - \hat p}}}}{{{\rm{\hat p}}}}\\ & = \frac{{{\rm{n - x}}}}{{\rm{x}}}\frac{{\rm{1}}}{{{\rm{\hat p}}}}{\rm{ - 1}}\\ &= \frac{{\rm{n}}}{{\rm{x}}}{\rm{ - 1}}\end{aligned}\)

Finally, the estimator is

\({\rm{\hat p = }}\frac{{\rm{X}}}{{\rm{n}}}{\rm{.}}\)

For \({\rm{n = 20}}\)and\({\rm{x = 3}}\), the estimate is\({\rm{\hat p = }}\frac{{\rm{3}}}{{{\rm{20}}}}{\rm{ = 0}}{\rm{.15}}\).

Thus, the estimated value is\({\rm{\hat p = }}\frac{{\rm{X}}}{{\rm{n}}}{\rm{;\hat p = 0}}{\rm{.15}}\).

04

Explanation

b)

The estimator is unbiased if the expected value of the estimator is\({\rm{p}}\). The following holds

\(\begin{aligned} E(\hat p) &= E \left( {\frac{{\rm{X}}}{{\rm{n}}}} \right)\\ & = \frac{{\rm{1}}}{{\rm{n}}}{\rm{ \times E(X)}}\\\ &= \frac{{\rm{1}}}{{\rm{n}}}{\rm{ \times np}}\\ &= p \end{aligned}\)

(1): see the proposition below.

Proposition: For a binomial random variable \({\rm{X}}\)with parameters\({\rm{n,p}}\), and\({\rm{q = 1 - p}}\), the following is true

\(\begin{aligned}{l}E(X) &= np\\ V(X) &= np(1 - p) = npq \\{{\rm{\sigma }}_{\rm{X}}} &= \sqrt {{\rm{npq}}} \end{aligned}\)

Since, \({\rm{E(\hat p) = p}}\)

Therefore, theestimator is unbiased.

05

Explanation

c)

The Invariance Principle:

Let \({{\rm{\hat \theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}\)be maximum likelihood estimates of parameters\({{\rm{\theta }}_{\rm{i}}}{\rm{,i = 1,2, \ldots ,n}}\). The mle of any function of parameters \({{\rm{\theta }}_{\rm{i}}}\)is the function of the mle's\({{\rm{\hat \theta }}_{\rm{i}}}\).

The mle of function\({\rm{h(p) = (1 - p}}{{\rm{)}}^{\rm{5}}}\)is the function of \({\rm{\hat p}}\),

\(\begin{array}{l}{\rm{h(\hat p) = (1 - \hat p}}{{\rm{)}}^{\rm{5}}}\\{\rm{ = (1 - 0}}{\rm{.15}}{{\rm{)}}^{\rm{5}}}{\rm{ = 0}}{\rm{.4437}}{\rm{.}}\end{array}\)

Therefore, the required probability is\({\rm{h(\hat p) = 0}}{\rm{.4437}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sample of \({\rm{n}}\) captured Pandemonium jet fighters results in serial numbers\({{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{,}}{{\rm{x}}_{\rm{3}}}{\rm{, \ldots ,}}{{\rm{x}}_{\rm{n}}}\). The CIA knows that the aircraft were numbered consecutively at the factory starting with \({\rm{\alpha }}\)and ending with\({\rm{\beta }}\), so that the total number of planes manufactured is \({\rm{\beta - \alpha + 1}}\) (e.g., if \({\rm{\alpha = 17}}\) and\({\rm{\beta = 29}}\), then \({\rm{29 - 17 + 1 = 13}}\)planes having serial numbers \({\rm{17,18,19, \ldots ,28,29}}\)were manufactured). However, the CIA does not know the values of \({\rm{\alpha }}\) or\({\rm{\beta }}\). A CIA statistician suggests using the estimator \({\rm{max}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ - min}}\left( {{{\rm{X}}_{\rm{i}}}} \right){\rm{ + 1}}\)to estimate the total number of planes manufactured.

a. If\({\rm{n = 5, x\_}}\left\{ {\rm{1}} \right\}{\rm{ = 237, x\_}}\left\{ {\rm{2}} \right\}{\rm{ = 375, x\_}}\left\{ {\rm{3}} \right\}{\rm{ = 202, x\_}}\left\{ {\rm{4}} \right\}{\rm{ = 525,}}\)and\({{\rm{x}}_{\rm{5}}}{\rm{ = 418}}\), what is the corresponding estimate?

b. Under what conditions on the sample will the value of the estimate be exactly equal to the true total number of planes? Will the estimate ever be larger than the true total? Do you think the estimator is unbiased for estimating\({\rm{\beta - \alpha + 1}}\)? Explain in one or two sentences.

An investigator wishes to estimate the proportion of students at a certain university who have violated the honor code. Having obtained a random sample of\({\rm{n}}\)students, she realizes that asking each, "Have you violated the honor code?" will probably result in some untruthful responses. Consider the following scheme, called a randomized response technique. The investigator makes up a deck of\({\rm{100}}\)cards, of which\({\rm{50}}\)are of type I and\({\rm{50}}\)are of type II.

Type I: Have you violated the honor code (yes or no)?

Type II: Is the last digit of your telephone number a\({\rm{0 , 1 , or 2}}\)(yes or no)?

Each student in the random sample is asked to mix the deck, draw a card, and answer the resulting question truthfully. Because of the irrelevant question on type II cards, a yes response no longer stigmatizes the respondent, so we assume that responses are truthful. Let\({\rm{p}}\)denote the proportion of honor-code violators (i.e., the probability of a randomly selected student being a violator), and let\({\rm{\lambda = P}}\)(yes response). Then\({\rm{\lambda }}\)and\({\rm{p}}\)are related by\({\rm{\lambda = }}{\rm{.5p + (}}{\rm{.5)(}}{\rm{.3)}}\).

a. Let\({\rm{Y}}\)denote the number of yes responses, so\({\rm{Y\sim}}\)Bin\({\rm{(n,\lambda )}}\). Thus Y / n is an unbiased estimator of\({\rm{\lambda }}\). Derive an estimator for\({\rm{p}}\)based on\({\rm{Y}}\). If\({\rm{n = 80}}\)and\({\rm{y = 20}}\), what is your estimate? (Hint: Solve\({\rm{\lambda = }}{\rm{.5p + }}{\rm{.15}}\)for\({\rm{p}}\)and then substitute\({\rm{Y/n}}\)for\({\rm{\lambda }}\).)

b. Use the fact that\({\rm{E(Y/n) = \lambda }}\)to show that your estimator\({\rm{\hat p}}\)is unbiased.

c. If there were\({\rm{70}}\)type I and\({\rm{30}}\)type II cards, what would be your estimator for\({\rm{p}}\)?

The mean squared error of an estimator \({\rm{\hat \theta }}\) is \({\rm{MSE(\hat \theta ) = E(\hat \theta - \hat \theta }}{{\rm{)}}^{\rm{2}}}\). If \({\rm{\hat \theta }}\) is unbiased, then \({\rm{MSE(\hat \theta ) = V(\hat \theta )}}\), but in general \({\rm{MSE(\hat \theta ) = V(\hat \theta ) + (bias}}{{\rm{)}}^{\rm{2}}}\) . Consider the estimator \({{\rm{\hat \sigma }}^{\rm{2}}}{\rm{ = K}}{{\rm{S}}^{\rm{2}}}\), where \({{\rm{S}}^{\rm{2}}}{\rm{ = }}\) sample variance. What value of K minimizes the mean squared error of this estimator when the population distribution is normal? (Hint: It can be shown that \({\rm{E}}\left( {{{\left( {{{\rm{S}}^{\rm{2}}}} \right)}^{\rm{2}}}} \right){\rm{ = (n + 1)}}{{\rm{\sigma }}^{\rm{4}}}{\rm{/(n - 1)}}\) In general, it is difficult to find \({\rm{\hat \theta }}\) to minimize \({\rm{MSE(\hat \theta )}}\), which is why we look only at unbiased estimators and minimize \({\rm{V(\hat \theta )}}\).)

In a random sample of 80 components of a certain type, 12 are found to be defective.

a. Give a point estimate of the proportion of all such components that are not defective.

b. A system is to be constructed by randomly selecting two of these components and connecting them in series, as shown here.

The series connection implies that the system will function if and only if neither component is defective (i.e., both components work properly). Estimate the proportion of all such systems that work properly. (Hint: If p denotes the probability that a component works properly, how can P (system works) be expressed in terms of p ?)

The shear strength of each of ten test spot welds is determined, yielding the following data (psi):

\(\begin{array}{*{20}{l}}{{\rm{392}}}&{{\rm{376}}}&{{\rm{401}}}&{{\rm{367}}}&{{\rm{389}}}&{{\rm{362}}}&{{\rm{409}}}&{{\rm{415}}}&{{\rm{358}}}&{{\rm{375}}}\end{array}\)

a. Assuming that shear strength is normally distributed, estimate the true average shear strength and standard deviation of shear strength using the method of maximum likelihood.

b. Again assuming a normal distribution, estimate the strength value below which\({\rm{95\% }}\)of all welds will have their strengths. (Hint: What is the\({\rm{95 th}}\)percentile in terms of\({\rm{\mu }}\)and\({\rm{\sigma }}\)? Now use the invariance principle.)

c. Suppose we decide to examine another test spot weld. Let\({\rm{X = }}\)shear strength of the weld. Use the given data to obtain the mle of\({\rm{P(Xยฃ400)}}{\rm{.(Hint:P(Xยฃ400) = \Phi ((400 - \mu )/\sigma )}}{\rm{.)}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free