Of \({{\rm{n}}_{\rm{1}}}\)randomly selected male smokers, \({{\rm{X}}_{\rm{1}}}\) smoked filter cigarettes, whereas of \({{\rm{n}}_{\rm{2}}}\) randomly selected female smokers, \({{\rm{X}}_{\rm{2}}}\) smoked filter cigarettes. Let \({{\rm{p}}_{\rm{1}}}\) and \({{\rm{p}}_{\rm{2}}}\) denote the probabilities that a randomly selected male and female, respectively, smoke filter cigarettes.
a. Show that \({\rm{(}}{{\rm{X}}_{\rm{1}}}{\rm{/}}{{\rm{n}}_{\rm{1}}}{\rm{) - (}}{{\rm{X}}_{\rm{2}}}{\rm{/}}{{\rm{n}}_{\rm{2}}}{\rm{)}}\) is an unbiased estimator for \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\). (Hint: \({\rm{E(}}{{\rm{X}}_{\rm{i}}}{\rm{) = }}{{\rm{n}}_{\rm{i}}}{{\rm{p}}_{\rm{i}}}\) for \({\rm{i = 1,2}}\).)
b. What is the standard error of the estimator in part (a)?
c. How would you use the observed values \({{\rm{x}}_{\rm{1}}}\) and \({{\rm{x}}_{\rm{2}}}\) to estimate the standard error of your estimator?
d. If \({{\rm{n}}_{\rm{1}}}{\rm{ = }}{{\rm{n}}_{\rm{2}}}{\rm{ = 200, }}{{\rm{x}}_{\rm{1}}}{\rm{ = 127}}\), and \({{\rm{x}}_{\rm{2}}}{\rm{ = 176}}\), use the estimator of part (a) to obtain an estimate of \({{\rm{p}}_{\rm{1}}}{\rm{ - }}{{\rm{p}}_{\rm{2}}}\).
e. Use the result of part (c) and the data of part (d) to estimate the standard error of the estimator.