Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose a certain type of fertilizer has an expected yield per acre of \({{\rm{\mu }}_{\rm{2}}}\)with variance \({{\rm{\sigma }}^{\rm{2}}}\)whereas the expected yield for a second type of fertilizer is with the same variance \({{\rm{\sigma }}^{\rm{2}}}\).Let \({\rm{S}}_{\rm{1}}^{\rm{2}}\) and \({\rm{S}}_{\rm{2}}^{\rm{2}}\)denote the sample variances of yields based on sample sizes \({{\rm{n}}_{\rm{1}}}\)and \({{\rm{n}}_{\rm{2}}}\),respectively, of the two fertilizers. Show that the pooled (combined) estimator

\({{\rm{\hat \sigma }}^{\rm{2}}}{\rm{ = }}\frac{{\left( {{{\rm{n}}_{\rm{1}}}{\rm{ - 1}}} \right){\rm{S}}_{\rm{1}}^{\rm{2}}{\rm{ + }}\left( {{{\rm{n}}_{\rm{2}}}{\rm{ - 1}}} \right){\rm{S}}_{\rm{2}}^{\rm{2}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}\)

is an unbiased estimator of \({{\rm{\sigma }}^{\rm{2}}}\)

Short Answer

Expert verified

It is unbiased.

Step by step solution

01

Concept introduction

An accurate statistic that is used to approximate a population parameter is known as an unbiased estimator. In this context, "accurate" means neither an overestimate nor an underestimate. If an overestimate or underestimate occurs, the difference's mean is referred to as a "bias."

02

Finding whether it is unbiased or not

The estimator is unbiased if the expected value of the supplied estimator is\({{\rm{\sigma }}^{\rm{2}}}\)As a result, the following is true:

\(\begin{array}{c}{\rm{E}}\left( {\frac{{\left( {{{\rm{n}}_{\rm{1}}}{\rm{ - 1}}} \right){\rm{S}}_{\rm{1}}^{\rm{2}}{\rm{ + }}\left( {{{\rm{n}}_{\rm{2}}}{\rm{ - 1}}} \right){\rm{S}}_{\rm{2}}^{\rm{2}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}} \right)\\{\rm{ = }}\frac{{{{\rm{n}}_{\rm{1}}}{\rm{ - 1}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}{\rm{E}}{\left( {{{\rm{S}}_{\rm{1}}}} \right)^{\rm{2}}}{\rm{ + }}\frac{{{{\rm{n}}_{\rm{2}}}{\rm{ - 1}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}{\rm{E}}\left( {{\rm{S}}_{\rm{2}}^{\rm{2}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} \frac{{{{\rm{n}}_{\rm{1}}}{\rm{ - 1}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}{{\rm{\sigma }}^{\rm{2}}}{\rm{ + }}\frac{{{{\rm{n}}_{\rm{2}}}{\rm{ - 1}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}{{\rm{\sigma }}^{\rm{2}}}\\{\rm{ = }}{{\rm{\sigma }}^{\rm{2}}}\frac{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}{{{{\rm{n}}_{\rm{1}}}{\rm{ + }}{{\rm{n}}_{\rm{2}}}{\rm{ - 2}}}}\\{\rm{ = }}{{\rm{\sigma }}^{\rm{2}}}{\rm{,}}\end{array}\)

(1): the estimators \({S_1}\)and \({S_2}\)are unbiased variance estimators,

Hence, it is unbiased.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider randomly selecting \({\rm{n}}\) segments of pipe and determining the corrosion loss (mm) in the wall thickness for each one. Denote these corrosion losses by \({{\rm{Y}}_{\rm{1}}}{\rm{,}}.....{\rm{,}}{{\rm{Y}}_{\rm{n}}}\). The article โ€œA Probabilistic Model for a Gas Explosion Due to Leakages in the Grey Cast Iron Gas Mainsโ€ (Reliability Engr. and System Safety (\({\rm{(2013:270 - 279)}}\)) proposes a linear corrosion model: \({{\rm{Y}}_{\rm{i}}}{\rm{ = }}{{\rm{t}}_{\rm{i}}}{\rm{R}}\), where \({{\rm{t}}_{\rm{i}}}\) is the age of the pipe and \({\rm{R}}\), the corrosion rate, is exponentially distributed with parameter \({\rm{\lambda }}\). Obtain the maximum likelihood estimator of the exponential parameter (the resulting mle appears in the cited article). (Hint: If \({\rm{c > 0}}\) and \({\rm{X}}\) has an exponential distribution, so does \({\rm{cX}}\).)

Consider a random sample \({{\rm{X}}_{\rm{1}}}{\rm{,}}{{\rm{X}}_{\rm{2}}}.....{\rm{,}}{{\rm{X}}_{\rm{n}}}\) from the shifted exponential pdf

\({\rm{f(x;\lambda ,\theta ) = }}\left\{ {\begin{array}{*{20}{c}}{{\rm{\lambda }}{{\rm{e}}^{{\rm{ - \lambda (x - \theta )}}}}}&{{\rm{x}} \ge {\rm{\theta }}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\). Taking \({\rm{\theta = 0}}\) gives the pdf of the exponential distribution considered previously (with positive density to the right of zero). An example of the shifted exponential distribution appeared in Example \({\rm{4}}{\rm{.5}}\), in which the variable of interest was time headway in traffic flow and \({\rm{\theta = }}{\rm{.5}}\) was the minimum possible time headway. a. Obtain the maximum likelihood estimators of \({\rm{\theta }}\) and \({\rm{\lambda }}\). b. If \({\rm{n = 10}}\) time headway observations are made, resulting in the values \({\rm{3}}{\rm{.11,}}{\rm{.64,2}}{\rm{.55,2}}{\rm{.20,5}}{\rm{.44,3}}{\rm{.42,10}}{\rm{.39,8}}{\rm{.93,17}}{\rm{.82}}\), and \({\rm{1}}{\rm{.30}}\), calculate the estimates of \({\rm{\theta }}\) and \({\rm{\lambda }}\).

Urinary angiotensinogen (AGT) level is one quantitative indicator of kidney function. The article โ€œUrinary Angiotensinogen as a Potential Biomarker of Chronic Kidney Diseasesโ€ (J. of the Amer. Society of Hypertension, \({\rm{2008: 349 - 354}}\)) describes a study in which urinary AGT level \({\rm{(\mu g)}}\) was determined for a sample of adults with chronic kidney disease. Here is representative data (consistent with summary quantities and descriptions in the cited article):

An appropriate probability plot supports the use of the lognormal distribution (see Section \({\rm{4}}{\rm{.5}}\)) as a reasonable model for urinary AGT level (this is what the investigators did).

a. Estimate the parameters of the distribution. (Hint: Rem ember that \({\rm{X}}\) has a lognormal distribution with parameters \({\rm{\mu }}\) and \({{\rm{\sigma }}^{\rm{2}}}\) if \({\rm{ln(X)}}\) is normally distributed with mean \({\rm{\mu }}\) and variance \({{\rm{\sigma }}^{\rm{2}}}\).)

b. Use the estimates of part (a) to calculate an estimate of the expected value of AGT level. (Hint: What is \({\rm{E(X)}}\)?)

Let \({{\rm{X}}_{\rm{1}}}{\rm{, \ldots ,}}{{\rm{X}}_{\rm{n}}}\) be a random sample from a pdf that is symmetric about \({\rm{\mu }}\). An estimator for \({\rm{\mu }}\) that has been found to perform well for a variety of underlying distributions is the Hodgesโ€“Lehmann estimator. To define it, first compute for each \({\rm{i}} \le {\rm{j}}\) and each \({\rm{j = 1,2, \ldots ,n}}\) the pairwise average \({{\rm{\bar X}}_{{\rm{i,j}}}}{\rm{ = }}\left( {{{\rm{X}}_{\rm{i}}}{\rm{ + }}{{\rm{X}}_{\rm{j}}}} \right){\rm{/2}}\). Then the estimator is \({\rm{\hat \mu = }}\) the median of the \({{\rm{\bar X}}_{{\rm{i,j}}}}{\rm{'s}}\). Compute the value of this estimate using the data of Exercise \({\rm{44}}\) of Chapter \({\rm{1}}\). (Hint: Construct a square table with the \({{\rm{x}}_{\rm{i}}}{\rm{'s}}\) listed on the left margin and on top. Then compute averages on and above the diagonal.)

Each of 150 newly manufactured items is examined and the number of scratches per item is recorded (the items are supposed to be free of scratches), yielding the following data:

Assume that X has a Poisson distribution with parameter \({\bf{\mu }}.\)and that X represents the number of scratches on a randomly picked item.

a. Calculate the estimate for the data using an unbiased \({\bf{\mu }}.\)estimator. (Hint: for X Poisson, \({\rm{E(X) = \mu }}\) ,therefore \({\rm{E(\bar X) = ?)}}\)

c. What is your estimator's standard deviation (standard error)? Calculate the standard error estimate. (Hint: \({\rm{\sigma }}_{\rm{X}}^{\rm{2}}{\rm{ = \mu }}\), \({\rm{X}}\))

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free