Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An airport limousine can accommodate up to four passengers on any one trip. The company will accept a maximum of six reservations for a trip, and a passenger must have a reservation. From previous records,\({\rm{20 \% }}\)of all those making reservations do not appear for the trip. Answer the following questions, assuming independence wherever appropriate. a. If six reservations are made, what is the probability that at least one individual with a reservation cannot be accommodated on the trip? b. If six reservations are made, what is the expected number of available places when the limousine departs? c. Suppose the probability distribution of the number of reservations made is given in the accompanying table.

Let X denote the number of passengers on a randomly selected trip. Obtain the probability mass function of X.

Short Answer

Expert verified

(a) The probability that at least one individual with a reservation cannot be accommodated on a trip is obtained as: \({\rm{P(X}} \ge {\rm{5) = 0}}{\rm{.6553}}\).

(b) The expected number of available places when limousine departs is obtained as: \({\rm{E(g(X)) = 0}}{\rm{.117504}}\).

(c) The probability mass function of X is obtained as:

\(p(x) = \left\{ {\begin{array}{*{20}{l}}{0.00124}&{,x = 0} \\ {0.01725}&{,x = 1} \\{0.09062}&{,x = 2} \\ {0.22733}&{,x = 3} \\ {0.66355}&{,x = 4} \\ 0&{,x\ddot I \{ 0,1, \ldots ,4\} } \end{array}} \right.\)

Step by step solution

01

Define Discrete random variables

A discrete random variable is one that can only take on a finite number of different values.

02

Step 2: What is the probability that at least one individual with a reservation cannot be accommodated on the trip?

(a) X stands for the number of bookings that show.

The random variable X has a Binomial Distribution with the following parameters: \({\rm{n = 6}}\) (six reservations are made) and \(\begin{array}{c}{\rm{p = 1 - 0}}{\rm{.2}}\\{\rm{ = 0}}{\rm{.8}}\end{array}\) (since \({\rm{20\% }}\) do not show, indicating that \({\rm{80 \% }}\) do). So,

\({\rm{X}} \sim {\rm{Bin(6,0}}{\rm{.8)}}\)

The chance that we must compute is (since the limousine can seat up to four people, thus if five or six arrive, at least one will be unable to be accommodated).

\(\begin{gathered}P(X \geqslant 5) = 1 - P(X < 5) \\ \mathop = \limits^{(1)} 1 - P(X \leqslant 4) \\ \mathop = \limits^{(2)} 1 - B(4;6,0.8) \\ \mathop = \limits^{(3)} 1 - 0.3446 \\ = 0.6553 \\ \end{gathered} \)

(1): X can only handle non-negative integers \({\rm{3}}\);

(2): See the Binomial Distribution cdf at the bottom of the page;

(3):You may get it from Appendix Table A.\({\rm{1}}\). or you can do it yourself.

The cdf of a binomial random variable X with parameters n and p is the Cumulative Density Function.

\(\begin{array}{c}{\rm{B(x;n,p) = P(X < 5)}}\\{\rm{ = }}\sum\limits_{{\rm{y = 0}}}^{\rm{x}} {{\rm{b(y;n,p)}}} \\{\rm{x = 0,1,}}....{\rm{,n}}\end{array}\)

Therefore, the probability is: \({\rm{P(X}} \ge {\rm{5) = 0}}{\rm{.6553}}\).

03

Step 3: What is the expected number of available places when the limousine departs?

(b) We'll stick with the same random variable X from part one (a). The number of available spots will be determined by the number of persons who show up; for example, if only six people show up, no spots will be available.

Similarly, if \({\rm{0}}\) people show up, \({\rm{4}}\) (all) available spots will be filled.

As a result, use g(X) to signify the newly produced random variable as follows:

T


The Expected Value (mean value) of any function g(X), where X is a discrete random variable X with a set of potential values S and pmf p(x), indicated as E(g(X)) \({\rm{(}}{{\rm{\mu }}_{{\rm{g(x)}}}}{\rm{)}}\).

\(\begin{array}{c}{\rm{E(g(x)) = (}}{{\rm{\mu }}_{{\rm{g(x)}}}}{\rm{)}}\\{\rm{ = }}\sum\limits_{{\rm{x}} \in {\rm{s}}} {{\rm{g(x) \bullet p(x)}}} \end{array}\)

The following is true based on the above proposition:

\(\begin{array}{c}{\rm{E(g(X)) = }}\sum\limits_{{\rm{x = 0}}}^{\rm{6}} {\rm{g}} {\rm{(x) \times p(x)}}\\{\rm{ = }}\sum\limits_{{\rm{x = 0}}}^{\rm{6}} {\rm{g}} {\rm{(x) \times b(x;6,0}}{\rm{.8)}}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{4 \times b(0;6,0}}{\rm{.8) + 3 \times b(1;6,0}}{\rm{.8) + 2 \times b(2;6,0}}{\rm{.8) + 1 \times b(3;6,0}}{\rm{.8)}}\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{4 \times }}\left( {\begin{array}{*{20}{l}}{\rm{6}}\\{\rm{0}}\end{array}} \right){\rm{0}}{\rm{.}}{{\rm{8}}^{\rm{0}}}{{\rm{(1 - 0}}{\rm{.8)}}^{{\rm{6 - 0}}}}{\rm{ + 3 \times }}\left( {\begin{array}{*{20}{l}}{\rm{6}}\\{\rm{1}}\end{array}} \right){\rm{0}}{\rm{.}}{{\rm{8}}^{\rm{1}}}{{\rm{(1 - 0}}{\rm{.8)}}^{{\rm{6 - 1}}}}{\rm{ + 2 \times }}\left( {\begin{array}{*{20}{l}}{\rm{6}}\\{\rm{2}}\end{array}} \right){\rm{0}}{\rm{.}}{{\rm{8}}^{\rm{2}}}{{\rm{(1 - 0}}{\rm{.8)}}^{{\rm{6 - 2}}}}{\rm{ + 1 \times }}\left( {\begin{array}{*{20}{l}}{\rm{6}}\\{\rm{3}}\end{array}} \right){\rm{0}}{\rm{.}}{{\rm{8}}^{\rm{3}}}{{\rm{(1 - 0}}{\rm{.8)}}^{{\rm{6 - 3}}}}\\{\rm{ = 4 \times 0}}{\rm{.00006 + 3 \times 0}}{\rm{.00154 + 2 \times 0}}{\rm{.01536 + 1 \times 0}}{\rm{.08192}}\\{\rm{ = 0}}{\rm{.117504}}\end{array}\)

(1):As, g(x) =\({\rm{0}}\), all the rest are zero;

(2): observe the following theorem.

Theorem:

\({\rm{b(x;n,p) = }}\left\{ {\begin{array}{*{20}{l}}{\left( {\begin{array}{*{20}{l}}{\rm{n}}\\{\rm{x}}\end{array}} \right){{\rm{p}}^{\rm{x}}}{{{\rm{(1 - p)}}}^{{\rm{n - x}}}}}&{{\rm{,x = 0,1,2, \ldots ,n}}}\\{\rm{0}}&{{\rm{, otherwise }}}\end{array}} \right.\)

Therefore, the expected number is: \({\rm{E(g(X)) = 0}}{\rm{.117504}}\).

04

Step 4: Obtaining the probability mass function of X.

(c) The number of passengers cannot exceed four, and only four persons will be allowed to participate in the specified trip. Reservations might range from three to six.

As a result, if no one shows up for the randomly picked journey, there will be no passengers. This can happen in four scenarios.

\({\rm{3}}\)reservations with no one showing up; \({\rm{4}}\) reservations with no one showing up; \({\rm{5}}\) reservations with no one showing up; \({\rm{6}}\) reservations with no one showing up. Indicate the occurrences.

\(\begin{array}{c}{{\rm{R}}_{\rm{i}}}{\rm{ = \{ i passenger reservations\} ;}}\\{{\rm{S}}_{\rm{i}}}{\rm{ = \{ i passenger show up\} }}{\rm{.}}\end{array}\)

As a result, the following is correct:

\(\begin{array}{c}{\rm{P\{ X = 0\} }}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{P}}\left( {\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{0}}}} \right) \cup \left( {{{\rm{R}}_{\rm{4}}} \cap {{\rm{S}}_{\rm{0}}}} \right) \cup \left( {{{\rm{R}}_{\rm{5}}} \cap {{\rm{S}}_{\rm{0}}}} \right) \cup \left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{0}}}} \right)} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{P}}\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{0}}}} \right){\rm{ + \ldots + }}\left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{0}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(3)}}} {\rm{P}}\left( {{{\rm{S}}_{\rm{0}}}\mid {{\rm{R}}_{\rm{3}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{3}}}} \right){\rm{ + \ldots + P}}\left( {{{\rm{S}}_{\rm{0}}}\mid {{\rm{R}}_{\rm{6}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{6}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(4)}}} {\rm{b(0;3,0}}{\rm{.8) \times 0}}{\rm{.1 + b(0;4,0}}{\rm{.8) \times 0}}{\rm{.2 + b(0;5,0}}{\rm{.8) \times 0}}{\rm{.3 + b(0;6,0}}{\rm{.8) \times 0}}{\rm{.4}}\\\mathop {\rm{ = }}\limits^{{\rm{(5)}}} {\rm{0}}{\rm{.008 \times 0}}{\rm{.1 + 0}}{\rm{.0016 \times 0}}{\rm{.2 + 0}}{\rm{.00032 \times 0}}{\rm{.3 + 0}}{\rm{.000064 \times 0}}{\rm{.4}}\\{\rm{ = 0}}{\rm{.00124}}\end{array}\)

(1):as previously stated, the event \({\rm{\{ X = 0\} }}\) may be modelled as the union of four discrete events;

(2):the sequence of events is disjointed;

(3) the following multiplication rule;

(4):in the exercise, the probability of occurrences \({{\rm{R}}_{\rm{i}}}\) are provided in a table; the likelihoods of happenings \({{\rm{S}}_{\rm{0}}}{\rm{|}}{{\rm{R}}_{\rm{i}}}\) may be determined using the binomial distribution (the number of trials varies based on the number of reservations!).

(5): the values may be computed using the same theorem as in (b).

The Rule of Multiplication

\({\rm{P(A}} \cap {\rm{B) = P(A|B) \bullet P(B)}}\)

Similarly, for the occurrence \({\rm{\{ X = 1\} }}\), which means that just one passenger goes on a journey, we have:

\(\begin{array}{c}{\rm{P\{ X = 1\} }}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{P}}\left( {\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{1}}}} \right) \cup \left( {{{\rm{R}}_{\rm{4}}} \cap {{\rm{S}}_{\rm{1}}}} \right) \cup \left( {{{\rm{R}}_{\rm{5}}} \cap {{\rm{S}}_{\rm{1}}}} \right) \cup \left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{1}}}} \right)} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{P}}\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{1}}}} \right){\rm{ + \ldots + }}\left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{1}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(3)}}} {\rm{P}}\left( {{{\rm{S}}_{\rm{1}}}\mid {{\rm{R}}_{\rm{3}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{3}}}} \right){\rm{ + \ldots + P}}\left( {{{\rm{S}}_{\rm{1}}}\mid {{\rm{R}}_{\rm{6}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{6}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(4)}}} {\rm{b(1;3,0}}{\rm{.8) \times 0}}{\rm{.1 + b(1;4,0}}{\rm{.8) \times 0}}{\rm{.2 + b(1;5,0}}{\rm{.8) \times 0}}{\rm{.3 + b(1;6,0}}{\rm{.8) \times 0}}{\rm{.4}}\\\mathop {\rm{ = }}\limits^{{\rm{(5)}}} {\rm{0}}{\rm{.096 \times 0}}{\rm{.1 + 0}}{\rm{.0256 \times 0}}{\rm{.2 + 0}}{\rm{.0064 \times 0}}{\rm{.3 + 0}}{\rm{.001536 \times 0}}{\rm{.4}}\\{\rm{ = 0}}{\rm{.01725}}\end{array}\)

(1): As previously stated, the event \({\rm{\{ X = 1\} }}\) may be modelled as the union of four discrete occurrences.

(2):the sequence of events is disjointed;

(3) the above-mentioned multiplication rule;

(4):in the exercise, the probability of occurrences \({{\rm{R}}_{\rm{i}}}\) are provided in a table; the probability of \({{\rm{S}}_{\rm{1}}}{\rm{|}}{{\rm{R}}_{\rm{i}}}\) events; may be computed using the binomial distribution (the number of trials fluctuates based on the number of reservations! );

(5): the values may be computed using the same theorem as in (b).

Similarly, for the occurrence \({\rm{\{ X = 2\} }}\), which means that just one passenger goes on a journey, we have:

\(\begin{array}{c}{\rm{P\{ X = 2\} }}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{P}}\left( {\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{2}}}} \right) \cup \left( {{{\rm{R}}_{\rm{4}}} \cap {{\rm{S}}_{\rm{2}}}} \right) \cup \left( {{{\rm{R}}_{\rm{5}}} \cap {{\rm{S}}_{\rm{2}}}} \right) \cup \left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{2}}}} \right)} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{P}}\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{2}}}} \right){\rm{ + \ldots + }}\left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{2}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(3)}}} {\rm{P}}\left( {{{\rm{S}}_{\rm{2}}}\mid {{\rm{R}}_{\rm{3}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{3}}}} \right){\rm{ + \ldots + P}}\left( {{{\rm{S}}_{\rm{2}}}\mid {{\rm{R}}_{\rm{6}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{6}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(4)}}} {\rm{b(2;3,0}}{\rm{.8) \times 0}}{\rm{.1 + b(2;4,0}}{\rm{.8) \times 0}}{\rm{.2 + b(2;5,0}}{\rm{.8) \times 0}}{\rm{.3 + b(2;6,0}}{\rm{.8) \times 0}}{\rm{.4}}\\\mathop {\rm{ = }}\limits^{{\rm{(5)}}} {\rm{0}}{\rm{.384 \times 0}}{\rm{.1 + 0}}{\rm{.1536 \times 0}}{\rm{.2 + 0}}{\rm{.0512 \times 0}}{\rm{.3 + 0}}{\rm{.01536 \times 0}}{\rm{.4}}\\{\rm{ = 0}}{\rm{.09062}}\end{array}\)

(1): As previously stated, the event \({\rm{\{ X = 2\} }}\) may be modelled as the union of four discrete occurrences.

(2):the sequence of events is disjointed;

(3) the above-mentioned multiplication rule;

(4):in the exercise, the probability of occurrences \({{\rm{R}}_{\rm{i}}}\) are provided in a table; the probability of \({{\rm{S}}_{\rm{2}}}{\rm{|}}{{\rm{R}}_{\rm{i}}}\) events; may be computed using the binomial distribution (the number of trials fluctuates based on the number of reservations! );

(5): the values may be computed using the same theorem as in (b).

Similarly, for the occurrence \({\rm{\{ X = 3\} }}\), which means that just one passenger goes on a journey, we have:

\(\begin{array}{c}{\rm{P\{ X = 3\} }}\\\mathop {\rm{ = }}\limits^{{\rm{(1)}}} {\rm{P}}\left( {\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{3}}}} \right) \cup \left( {{{\rm{R}}_{\rm{4}}} \cap {{\rm{S}}_{\rm{3}}}} \right) \cup \left( {{{\rm{R}}_{\rm{5}}} \cap {{\rm{S}}_{\rm{3}}}} \right) \cup \left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{3}}}} \right)} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(2)}}} {\rm{P}}\left( {{{\rm{R}}_{\rm{3}}} \cap {{\rm{S}}_{\rm{3}}}} \right){\rm{ + \ldots + }}\left( {{{\rm{R}}_{\rm{6}}} \cap {{\rm{S}}_{\rm{3}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(3)}}} {\rm{P}}\left( {{{\rm{S}}_{\rm{3}}}\mid {{\rm{R}}_{\rm{3}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{3}}}} \right){\rm{ + \ldots + P}}\left( {{{\rm{S}}_{\rm{3}}}\mid {{\rm{R}}_{\rm{6}}}} \right){\rm{ \times P}}\left( {{{\rm{R}}_{\rm{6}}}} \right)\\\mathop {\rm{ = }}\limits^{{\rm{(4)}}} {\rm{b(3;3,0}}{\rm{.8) \times 0}}{\rm{.1 + b(3;4,0}}{\rm{.8) \times 0}}{\rm{.2 + b(3;5,0}}{\rm{.8) \times 0}}{\rm{.3 + b(3;6,0}}{\rm{.8) \times 0}}{\rm{.4}}\\\mathop {\rm{ = }}\limits^{{\rm{(5)}}} {\rm{0}}{\rm{.512 \times 0}}{\rm{.1 + 0}}{\rm{.4096 \times 0}}{\rm{.2 + 0}}{\rm{.2048 \times 0}}{\rm{.3 + 0}}{\rm{.08192 \times 0}}{\rm{.4}}\\{\rm{ = 0}}{\rm{.22733}}\end{array}\)

(1): As previously stated, the event \({\rm{\{ X = 3\} }}\) may be modelled as the union of four discrete occurrences.

(2):the sequence of events is disjointed;

(3) the above-mentioned multiplication rule;

(4):in the exercise, the probability of occurrences \({{\rm{R}}_{\rm{i}}}\) are provided in a table; the probability of \({{\rm{S}}_{\rm{3}}}{\rm{|}}{{\rm{R}}_{\rm{i}}}\) events; may be computed using the binomial distribution (the number of trials fluctuates based on the number of reservations! );

(5): the values may be computed using the same theorem as in (b).

Now, for \({\rm{\{ X = 4\} }}\)the following is true:

\(\begin{array}{c}{\rm{P\{ X = 4\} = 1 - (P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)) }}\\{\rm{ = 1 - 0}}{\rm{.00124 - 0}}{\rm{.01725 - 0}}{\rm{.09062 - 0}}{\rm{.22733}}\\{\rm{ = 0}}{\rm{.66355}}\end{array}\)

As, the random variable can only take the values \({\rm{0, 1, 2, 3}}\), and \({\rm{4}}\), the pmf of X is zero for all other \({\rm{x }} \in {\rm{ R}}\).

Finally, in the exercise, the pmf of random variable X is:

\({\rm{p(x) = }}\left\{ {\begin{array}{*{20}{l}}{{\rm{0}}{\rm{.00124}}}&{{\rm{,x = 0}}}\\{{\rm{0}}{\rm{.01725}}}&{{\rm{,x = 1}}}\\{{\rm{0}}{\rm{.09062}}}&{{\rm{,x = 2}}}\\{{\rm{0}}{\rm{.22733}}}&{{\rm{,x = 3}}}\\{{\rm{0}}{\rm{.66355}}}&{{\rm{,x = 4}}}\\{\rm{0}}&{{\rm{,x\ddot I \{ 0,1, \ldots ,4\} }}}\end{array}} \right.\)

Therefore, the mass function of X is: \({\rm{p(x) = }}\left\{ {\begin{array}{*{20}{l}}{{\rm{0}}{\rm{.00124}}}&{{\rm{,x = 0}}}\\{{\rm{0}}{\rm{.01725}}}&{{\rm{,x = 1}}}\\{{\rm{0}}{\rm{.09062}}}&{{\rm{,x = 2}}}\\{{\rm{0}}{\rm{.22733}}}&{{\rm{,x = 3}}}\\{{\rm{0}}{\rm{.66355}}}&{{\rm{,x = 4}}}\\{\rm{0}}&{{\rm{,x\ddot I \{ 0,1, \ldots ,4\} }}}\end{array}} \right.\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The accompanying specific gravity values for various wood types used in construction appeared in the article โ€œBolted Connection Design Values Based on European Yield Modelโ€ (J. of Structural Engr., 1993: 2169โ€“2186):

.31

.35

.36

.36

.37

.38

.40

.40

.40

.41

.41

.42

.42

.42

.42

.42

.43

.44

.45

.46

.46

.47

.48

.48

.48

.51

.54

.54

.55

.58

.62

.66

.66

.67

.68

.75

Construct a stem-and-leaf display using repeated stems, and comment on any interesting features of the display.

Blood cocaine concentration (mg/L) was determined both for a sample of individuals who had died from cocaine-induced excited delirium (ED) and for a sample of those who had died from a cocaine overdose without excited delirium; survival time for people in both groups was at most 6 hours. The accompanying data was read from a comparative boxplot in the article โ€œFatal Excited Delirium Following Cocaine Useโ€ (J.

of Forensic Sciences, 1997: 25โ€“31).

ED0 0 0 0 .1 .1 .1 .1 .2 .2 .3 .3

.3 .4 .5 .7 .8 1.0 1.5 2.7 2.8

3.5 4.0 8.9 9.2 11.7 21.0

Non-ED0 0 0 0 0 .1 .1 .1 .1 .2 .2 .2

.3 .3 .3 .4 .5 .5 .6 .8 .9 1.0

1.2 1.4 1.5 1.7 2.0 3.2 3.5 4.1

4.3 4.8 5.0 5.6 5.9 6.0 6.4 7.9

8.3 8.7 9.1 9.6 9.9 11.0 11.5

12.2 12.7 14.0 16.6 17.8

a. Determine the medians, fourths, and fourth spreads for the two samples.

b. Are there any outliers in either sample? Any extreme outliers?

c. Construct a comparative boxplot, and use it as a basis for comparing and contrasting the ED and non-ED samples.

Here is a stem-and-leaf display of the escape time data introduced in Exercise 36 of this chapter.

32

55

33

49

34


35

6699

36

34469

37

3345

38

9

39

2347

40

23

41


42

4

a. Determine the value of the fourth spread.

b. Are there any outliers in the sample? Any extreme outliers?

c. Construct a boxplot and comment on its features.

d. By how much could the largest observation, currently 424, be decreased without affecting the value of the fourth spread?

The accompanying comparative boxplot of gasoline vapor coefficients for vehicles in Detroit appeared in the article โ€œReceptor Modeling Approach to VOCEmission Inventory Validationโ€ (J. of Envir. Engr.,1995: 483โ€“490). Discuss any interesting features.

A company utilizes two different machines to manufacture parts of a certain type. During a single shift, a sample of n=20 parts produced by each machine is obtained, and the value of a particular critical dimension for each part is determined. The comparative boxplot at the bottom of this page is constructed from the resulting data. Compare and contrast the two samples.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free