Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An experiment to study the lifetime (in hours) for acertain type of component involved putting ten components into operation and observing them for 100hours. Eight of the components failed during that

period, and those lifetimes were recorded. Denote the lifetimes of the two components still functioning after100 hours by 100+. The resulting sample observations were

48 79 100+ 35 92 86 57 100+ 17 29

Which of the measures of center discussed in this section can be calculated, and what are the values of those measures? (Note:The data from this experiment is said to be “censored on the right.”)

Short Answer

Expert verified

The median value is 68.

The 20% trimmed mean is 66.2.

The 30% trimmed mean is 67.5.

Step by step solution

01

Given information

The sample data for the lifetime (in hours) for a certain type of component is provided.

02

Computing the measures of center

The measures of the center that can be computed in the provided scenario are median, 20% trimmed mean and 30% trimmed mean.

The sample median is computed by first ordering the data in ascending order.

The data arranged in ascending order is as follows,

17 29 35 48 57 79 86 92 100+ 100+

For the even number of observations, the median value is computed as,

\(\begin{array}{c}\tilde x &=& average\;of\;{\left( {\frac{n}{2}} \right)^{th}}and\;{\left( {\frac{n}{2} + 1} \right)^{th}}\;ordered\;values\\ &=& average\;of\;{\left( {\frac{{10}}{2}} \right)^{th}}and\;{\left( {\frac{{10}}{2} + 1} \right)^{th}}\;ordered\;values\\ &=& average\;of\;{\left( 5 \right)^{th}}and\;{\left( 6 \right)^{th}}\;ordered\;values\\ &=& \frac{{57 + 79}}{2}\\ &=& 68\end{array}\)

Thus, the median value is 68.

Using the arranged data,

The 20% trimmed mean is computed by eliminating the smallest two and the largest two values from the data and taking the average of the rest of the data.

The 20% trimmed mean is given as,

\(\begin{array}{c}{{\bar x}_{tr\left( {20} \right)}} = \frac{{35 + 48 + 57 + ... + 92}}{6}\\ = 66.2\end{array}\)

Therefore, the 20% trimmed mean is 66.2.

The 30% trimmed mean is computed by eliminating the smallest three and the largest three values from the data and taking the average of the rest of the data.

\(\begin{array}{c}{{\bar x}_{tr\left( {30} \right)}} &=& \frac{{48 + 57 + 79 + 86}}{4}\\ &=& 67.5\end{array}\)

Therefore, the 30% trimmed mean is 67.5.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The following data on distilled alcohol content (%) for a sample of 35 port wines was extracted from the article “A Method for the Estimation of Alcohol in Fortified Wines Using Hydrometer Baumé and Refractometer Brix” (Amer. J. Enol. Vitic., 2006:486–490). Each value is an average of two duplicate measurements.

16.35 18.85 16.20 17.75 19.58 17.73 22.75 23.78 23.25
19.08 19.62 19.20 20.05 17.85 19.17 19.48 20.00 19.97
17.48 17.15 19.07 19.90 18.68 18.82 19.03 19.45 19.37
19.20 18.00 19.60 19.33 21.22 19.50 15.30 22.25

Use methods from this chapter, including a boxplot that
shows outliers, to describe and summarize the data.

The accompanying specific gravity values for various wood types used in construction appeared in the article “Bolted Connection Design Values Based on European Yield Model” (J. of Structural Engr., 1993: 2169–2186):

.31

.35

.36

.36

.37

.38

.40

.40

.40

.41

.41

.42

.42

.42

.42

.42

.43

.44

.45

.46

.46

.47

.48

.48

.48

.51

.54

.54

.55

.58

.62

.66

.66

.67

.68

.75

Construct a stem-and-leaf display using repeated stems, and comment on any interesting features of the display.

Here is a description from Minitab of the strength datagiven in Exercise 13.


Variable N Mean Median TrMean StDev SE Mean
strength 153 135.39 135.40 135.41 4.59 0.37
Variable Minimum Maximum Q1Q3
strength 122.20 147.70 132.95 138.25

  1. Comment on any interesting features (the quartiles and fourths are virtually identical here).
  2. Construct a boxplot of the data based on the quartiles, and comment on what you see.

The article “Statistical Modeling of the Time Courseof Tantrum Anger” (Annals of Applied Stats, 2009:1013–1034) discussed how anger intensity in children’s tantrums could be related to tantrumduration as well as behavioral indicators such asshouting, stamping, and pushing or pulling. The followingfrequency distribution was given (and also

the corresponding histogram):

0-<2: 136 2-<4: 92 4-<11: 71

11-<20: 26 20-<30: 7 30-<40: 3

Draw the histogram and then comment on any interesting features.

Consider the following sample of observations on coating thickness for low-viscosity paint ("Achieving a Target Value for a Manufacturing Process: \({\rm{A}}\)Case Study, \({\rm{97}}\)J. of Quality Technology, \({\rm{1992:22 - 26}}\)):

\(\begin{array}{*{20}{r}}{{\rm{.83}}}&{{\rm{.88}}}&{{\rm{.88}}}&{{\rm{1}}{\rm{.04}}}&{{\rm{1}}{\rm{.09}}}&{{\rm{1}}{\rm{.12}}}&{{\rm{1}}{\rm{.29}}}&{{\rm{1}}{\rm{.31}}}\\{{\rm{1}}{\rm{.48}}}&{{\rm{1}}{\rm{.49}}}&{{\rm{1}}{\rm{.59}}}&{{\rm{1}}{\rm{.62}}}&{{\rm{1}}{\rm{.65}}}&{{\rm{1}}{\rm{.71}}}&{{\rm{1}}{\rm{.76}}}&{{\rm{1}}{\rm{.83}}}\end{array}\)

Assume that the distribution of counting thickness is normal (a normal probability plot strongly supports this assumption).

a. Calculate a point estimate of the mean value of coating thickness, and state which estimator you used.

b. Calculate a point estimate of the median of the coating thickness distribution, and state which estimator you used.

C. Calculate a point estimate of the value that separates the largest of\({\rm{10\% }}\) all values in the thickness distribution from the remaining \({\rm{90\% }}\)and state which estimator you used. (Hint Express what you are trying to estimate in terms of \({\rm{\mu }}\)and \({\rm{\sigma }}\)

d. Estimate \({\rm{P}}\left( {{\rm{X < 1}}{\rm{.5}}} \right){\rm{,}}\)i.e., the proportion of all thickness values less than 1.5. (Hint: If you knew the values of \({\rm{\mu }}\)and \({\rm{\sigma }}\), you could calculate this probability. These values are not available, but they can be estimated.)

e. What is the estimated standard error of the estimator that you used in part (b)?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free