Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\rm{X}}\) denote the amount of space occupied by an article placed in a \({\rm{1 - f}}{{\rm{t}}^{\rm{3}}}\) packing container. The pdf of \({\rm{X}}\) is

\({\rm{f(x) = }}\left\{ {\begin{array}{*{20}{c}}{{\rm{90}}{{\rm{x}}^{\rm{8}}}{\rm{(1 - x)}}}&{{\rm{0 < x < 1}}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

a. Graph the pdf. Then obtain the cdf of \({\rm{X}}\) and graph it. b. What is \({\rm{P(X}} \le {\rm{.5)}}\) (i.e., \({\rm{F(}}{\rm{.5)}}\))? c. Using the cdf from (a), what is \({\rm{P(}}{\rm{.25 < X}} \le {\rm{.5)}}\)? What is \({\rm{P(}}{\rm{.25}} \le {\rm{X}} \le {\rm{.5)}}\)? d. What is the \({\rm{75th}}\) percentile of the distribution? e. Compute \({\rm{E(X)}}\) and \({{\rm{\sigma }}_{\rm{X}}}\). f. What is the probability that \({\rm{X}}\) is more than \({\rm{1}}\) standard deviation from its mean value?

Short Answer

Expert verified

(a) The value is \({\rm{F(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x}} \le {\rm{0}}}\\{{{\rm{x}}^{\rm{9}}}{\rm{(10 - 9x)}}}&{{\rm{0 < x < 1}}}\\{\rm{1}}&{{\rm{x}} \ge {\rm{1}}}\end{array}} \right.\).

(b)The value is\({\rm{0}}{\rm{.01074}}\).

(c)The value is\({\rm{0}}{\rm{.01071}}\).

(d)The value is\({\rm{0}}{\rm{.9036}}\).

(e)The values are\({\rm{0}}{\rm{.8182}}\)and\({\rm{0}}{\rm{.111}}\).

(f) The value is \({\rm{0}}{\rm{.3146}}\).

Step by step solution

01

Define mean

The average of a group of numbers is simply defined as the mean. In statistics, the mean is also one of the indicators of central tendency.

02

Explanation


(a)We are given the following pdf\({\rm{f(x)}}\):

\({\rm{f(x) = }}\left\{ {\begin{array}{*{20}{l}}{{\rm{90 \times }}{{\rm{x}}^{\rm{8}}}{\rm{(1 - x)}}}&{{\rm{0 < x < 1}}}\\{\rm{0}}&{{\rm{ otherwise }}}\end{array}} \right.\)

The definition of cdf for a continuous random variable X is as follows:

For each number\({\rm{x}}\), the cumulative distribution function\({\rm{F(x)}}\)for a continuous\({\rm{rv}}\)\({\rm{X}}\)is defined by

\(\begin{array}{c}{\rm{F(x) = P(X}} \le {\rm{x)}}\\{\rm{ = }}\int_{{\rm{ - }}\infty }^{\rm{x}} {\rm{f}} {\rm{(y) \times dy}}\end{array}\)

If\({\rm{x}}\)is an integer between\({\rm{0}}\)and\({\rm{1}}\),

\(\begin{array}{c}{\rm{F(X) = }}\int_{\rm{0}}^{\rm{x}} {\rm{9}} {\rm{0 \times }}{{\rm{y}}^{\rm{8}}}{\rm{(1 - y) \times dy}}\\{\rm{ = 90}}\int_{\rm{0}}^{\rm{x}} {{{\rm{y}}^{\rm{8}}}} {\rm{dy - 90}}\int_{\rm{0}}^{\rm{x}} {{{\rm{y}}^{\rm{9}}}} {\rm{dy}}\\{\rm{ = 90}}\left( {\frac{{{{\rm{y}}^{\rm{9}}}}}{{\rm{9}}}} \right)_{\rm{0}}^{\rm{x}}{\rm{ - 90}}\left( {\frac{{{{\rm{y}}^{{\rm{10}}}}}}{{{\rm{10}}}}} \right)_{\rm{0}}^{\rm{x}}\\{\rm{ = }}\frac{{{\rm{90}}}}{{\rm{9}}}\left( {{{\rm{x}}^{\rm{9}}}{\rm{ - 0}}} \right){\rm{ - }}\frac{{{\rm{90}}}}{{\rm{9}}}\left( {{{\rm{x}}^{{\rm{10}}}}} \right)\\{\rm{F(X) = }}{{\rm{x}}^{\rm{9}}}{\rm{(10 - 9x)}}\end{array}\)

As a result,\({\rm{F(X)}}\)can be written as:

\({\rm{F(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x}} \le {\rm{0}}}\\{{{\rm{x}}^{\rm{9}}}{\rm{(10 - 9x)}}}&{{\rm{0 < x < 1}}}\\{\rm{1}}&{{\rm{x}} \ge {\rm{1}}}\end{array}} \right.\)

03

Explanation

(b) We can write: Using the cdf provided in part(a),

\(\begin{aligned}{\rm{P(X}} \le {\rm{0}}.5) &= F(0{\rm{.5)}}\\ &= 0{\rm{.}}{{\rm{5}}^{\rm{9}}}{\rm{(10 - 9(0}}{\rm{.5))}}\\ &= 0 {\rm{.}}{{\rm{5}}^{\rm{9}}}{\rm{(5}}{\rm{.5)}}\\{\rm{P(X}} \le {\rm{0}}.5) &= 0 {\rm{.01074}}\end{aligned}\)

Therefore, the value is \({\rm{0}}{\rm{.01074}}\).

04

Explanation

(c) As, \({\rm{P(0}}{\rm{.25 < X}} \le {\rm{0}}{\rm{.5)}}\) signifies the probability that an article placed in a \({\rm{1f}}{{\rm{t}}^{\rm{3}}}\) packing container will take up at least \({\rm{0}}{\rm{.25f}}{{\rm{t}}^{\rm{3}}}\) but less than or equal to \({\rm{0}}{\rm{.5f}}{{\rm{t}}^{\rm{3}}}\).

\(\begin{aligned}{\rm{P(0}}{\rm{.25 < X}} \le {\rm{0}} .5) &= F(0 {\rm{.5) - F(0}}{\rm{.25)}}\\ & = \left( {{\rm{0}}{\rm{.}}{{\rm{5}}^{\rm{9}}}{\rm{(10 - 9(0}}{\rm{.5))}}} \right){\rm{ - }}\left( {{\rm{0}}{\rm{.2}}{{\rm{5}}^{\rm{9}}}{\rm{(10 - 9(0}}{\rm{.25))}}} \right)\\& = (0{\rm{.01074) - (0}}{\rm{.00003)}}\\{\rm{P(0}}{\rm{.25 < X}} \le {\rm{0}} .5) &= 0{\rm{.01071}}\end{aligned}\)

Let X be a continuous\({\rm{rv}}\)with pdf\({\rm{f(x)}}\)and cdf\({\rm{F}}\)as a proposition\({\rm{(x)}}\). Then, using\({\rm{a < b}}\), for any two numbers a and b,

\({\rm{P(a}} \le {\rm{X}} \le {\rm{b) = F(b) - F(a)}}\)

Therefore, the value is \({\rm{0}}{\rm{.01071}}\).

05

Explanation

(d)Recall that the percentile of any given distribution is defined as follows: Let p be a positive integer between\({\rm{0}}\)and\({\rm{1}}\). The\({{\rm{(100p)}}^{{\rm{th}}}}\)percentile of a continuous \({\rm{rv}}\)X's distribution (denoted by\({{\rm{\eta }}_{\rm{p}}}\)) is defined by

\(\begin{array}{c}{\rm{p = F}}\left( {{{\rm{\eta }}_{\rm{p}}}} \right)\\{\rm{ = }}\int_{{\rm{ - }}\infty }^{{{\rm{\eta }}_{\rm{p}}}} {\rm{f}} {\rm{(y)dy}}\end{array}\)

We need to find the\({\rm{7}}{{\rm{5}}^{\rm{t}}}{\rm{h}}\)percentile for the given distribution. Let's use\({{\rm{\eta }}_{{\rm{75}}}}\)as an example.

\(\begin{array}{c}{\rm{0}}{\rm{.75 = F}}\left( {{{\rm{\eta }}_{{\rm{75}}}}} \right)\\{\rm{0}}{\rm{.75 = }}{\left( {{{\rm{\eta }}_{{\rm{75}}}}} \right)^{\rm{9}}}\left( {{\rm{10 - 9}}\left( {{{\rm{\eta }}_{{\rm{75}}}}} \right)} \right)\end{array}\)

This problem can be overcome with the help of technology. As a result, we have:

\({{\rm{\eta }}_{{\rm{75}}}}{\rm{ = 0}}{\rm{.9036}}\)

Therefore, the value is \({\rm{0}}{\rm{.9036}}\).

06

Explanation

(e)The following is a formula for calculating the average depth value:

\(\begin{aligned} E(X) &= \int_{{\rm{ - }}\infty }^\infty {\rm{x}} {\rm{ \times f(x) \times dx}}\\ &= \int_{\rm{0}}^{\rm{1}} {\rm{x}} {\rm{ \times 90}}{{\rm{x}}^{\rm{8}}}{\rm{(1 - x) \times dx}}\\ &= 90\int_{\rm{0}}^{\rm{1}} {{{\rm{x}}^{\rm{9}}}} {\rm{(1 - x) \times dx}}\\ &= 90 \int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{\rm{9}}}{\rm{ - }}{{\rm{x}}^{{\rm{10}}}}} \right)} {\rm{ \times dx}}\\ &= 90\left( {\frac{{{{\rm{x}}^{{\rm{10}}}}}}{{{\rm{10}}}}{\rm{ - }}\frac{{{{\rm{x}}^{{\rm{11}}}}}}{{{\rm{11}}}}} \right)_{\rm{0}}^{\rm{1}}\\ &= 90\left( {\frac{{\rm{1}}}{{{\rm{10}}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{11}}}}} \right)\\ &= \frac{{\rm{9}}}{{{\rm{11}}}}\\ E(X) &= 0 {\rm{.8182}}\end{aligned}\)

The expected or mean value of a continuous\({\rm{rv}}\)X with pdf\({\rm{f(x)}}\)is defined as,

\(\begin{array}{c}{\rm{\mu = E(X)}}\\{\rm{ = }}\int_{{\rm{ - }}\infty }^\infty {\rm{x}} {\rm{ \times f(x) \times dx}}\end{array}\)

To calculate variance for the pdf\({\rm{f(x)}}\), we first calculate\({\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right)\):

\(\begin{aligned}{\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right) &= \int_{{\rm{ - }}\infty }^\infty {{{\rm{x}}^{\rm{2}}}} {\rm{ \times f(x) \times dx}}\\ &= \int_{\rm{0}}^{\rm{1}} {{{\rm{x}}^{\rm{2}}}} {\rm{ \times 90}}{{\rm{x}}^{\rm{8}}}{\rm{(1 - x) \times dx}}\\ &= 90 \int_{\rm{0}}^{\rm{1}} {{{\rm{x}}^{{\rm{10}}}}} {\rm{(1 - x) \times dx}}\\ &= 90 \int_{\rm{0}}^{\rm{1}} {\left( {{{\rm{x}}^{{\rm{10}}}}{\rm{ - }}{{\rm{x}}^{{\rm{11}}}}} \right)} {\rm{ \times dx}}\\ &= 90 \left( {\frac{{{{\rm{x}}^{{\rm{11}}}}}}{{{\rm{11}}}}{\rm{ - }}\frac{{{{\rm{x}}^{{\rm{12}}}}}}{{{\rm{12}}}}} \right)_{\rm{0}}^{\rm{1}}\\ &= 90\left( {\frac{{\rm{1}}}{{{\rm{11}}}}{\rm{ - }}\frac{{\rm{1}}}{{{\rm{12}}}}} \right)\\ &= \frac{{{\rm{15}}}}{{{\rm{22}}}}\\ E(X) &= 0{\rm{.6818}}\end{aligned}\)

We use the following proposition because we already calculated\({\rm{E(X)}}\)in the previous section:\({\rm{E(X) = 0}}{\rm{.8182}}\).

\({\rm{V(X) = E}}\left( {{{\rm{X}}^{\rm{2}}}} \right){\rm{ - E(X}}{{\rm{)}}^{\rm{2}}}\)

This allows us to write:

\(\begin{array}{c}{\rm{V(X) = 0}}{\rm{.6818 - (0}}{\rm{.8182}}{{\rm{)}}^{\rm{2}}}\\{\rm{V(X) = 0}}{\rm{.0123}}\end{array}\)

Standard deviation\(\left( {{{\rm{\sigma }}_{\rm{X}}}} \right)\)can now be represented as follows:

\(\begin{array}{c}{{\rm{\sigma }}_{\rm{X}}}{\rm{ = }}\sqrt {{\rm{V(X)}}} \\{\rm{ = }}\sqrt {{\rm{0}}{\rm{.0123}}} \\{{\rm{\sigma }}_{\rm{X}}}{\rm{ = 0}}{\rm{.111}}\end{array}\)

\({\rm{h(X)}}\)is any function of X if X is a continuous\({\rm{rv}}\)with pdf\({\rm{f(x)}}\), then,

\({\rm{E(h(x)) = }}\int_{{\rm{ - }}\infty }^\infty {\rm{h}} {\rm{(x) \times f(x) \times dx}}\)

Therefore, the values are \({\rm{0}}{\rm{.8182}}\) and \({\rm{0}}{\rm{.111}}\).

07

Explanation

(f) We may deduce the mean and standard deviation of the provided pdf from part(a):

\(\begin{aligned}E(X) &= \mu \\ &= 0 {\rm{.8182}}\\{{\rm{\sigma }}_{\rm{X}}} &= 0 {\rm{.1111}}\end{aligned}\)

\({\rm{P}}\left( {{\rm{\mu - }}{{\rm{\sigma }}_{\rm{X}}}{\rm{ < X < \mu + }}{{\rm{\sigma }}_{\rm{X}}}} \right)\) stands for the chance that the observed depth is within one standard deviation of the mean value.

\(\begin{aligned}{\rm{P}}\left( {{\rm{\mu - }}{{\rm{\sigma }}_{\rm{X}}}{\rm{ < X < \mu + }}{{\rm{\sigma }}_{\rm{X}}}} \right) &= P(0 {\rm{.7071 < X < 0}}{\rm{.9293)}}\\ &= F(0 {\rm{.9293) - F(0}}{\rm{.7071)}}\\ &= \left( {{{{\rm{(0}}{\rm{.9293)}}}^{\rm{9}}}{\rm{(10 - 9(0}}{\rm{.9293)) - }}\left( {{{{\rm{(0}}{\rm{.7071)}}}^{\rm{9}}}{\rm{(10 - 9(0}}{\rm{.7071))}}} \right.} \right.\\ &= (0{\rm{.8458) - (0}}{\rm{.1604)}}\\{\rm{P}}\left( {{\rm{\mu - }}{{\rm{\sigma }}_{\rm{X}}}{\rm{ < X < \mu + }}{{\rm{\sigma }}_{\rm{X}}}} \right) &= 0 {\rm{.6854}}\end{aligned}\)

We need to figure out the likelihood that X is more than one standard deviation away from its mean value. Let p be the symbol for it.

Then

\(\begin{aligned} p &= 1 - P\left( {{\rm{\mu - }}{{\rm{\sigma }}_{\rm{X}}}{\rm{ < X < \mu + }}{{\rm{\sigma }}_{\rm{X}}}} \right)\\ &= 1 - 0 {\rm{.6854}}\\ p &= 0 {\rm{.3146}}\end{aligned}\)

As a result, the chance that\({\rm{X}}\)is more than one standard deviation away from its mean value is\({\rm{0}}{\rm{.3149}}\).

Definition: If\({\rm{\bar A}}\)is the complement of\({\rm{A}}\), then

\({\rm{P(\bar A) = 1 - P(A)}}\)

Therefore, the value is \({\rm{0}}{\rm{.3146}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The May 1, 2009, issue of the Mont clarian reported the following home sale amounts for a sample of homes in Alameda, CA that were sold the previous month (1000s of $):

590 815 575 608 350 1285 408 540 555 679

  1. Calculate and interpret the sample mean and median.
  2. Suppose the 6th observation had been 985 rather than 1285. How would the mean and median change?
  3. Calculate a 20% trimmed mean by first trimming the two smallest and two largest observations.
  4. Calculate a 15% trimmed mean.

The California State University (CSU) system consists of 23 campuses, from San Diego State in the south to Humboldt State near the Oregon border. A CSU administrator wishes to make an inference about the average distance between the hometowns of students and their campuses. Describe and discuss several different sampling methods that might be employed. Would this be an enumerative or an analytic study? Explain yourreasoning.

Two airplanes are flying in the same direction in adjacent parallel corridors. At time \({\rm{t = 10}}\), the first airplane is \({\rm{10}}\)km ahead of the second one. Suppose the speed of the first plane (km/hr.) is normally distributed with mean \({\rm{520\;}}\)and standard deviation \({\rm{10}}\) and the second planeโ€™s speed is also normally distributed with mean and standard deviation \({\rm{500\; and\; 10}}\), respectively.

a. What is the probability that after \({\rm{2hr}}{\rm{. }}\)of flying, the second plane has not caught up to the first plane?

b. Determine the probability that the planes are separated by at most \({\rm{10km\; after\; 2hr}}{\rm{. }}\)

Suppose your waiting time for a bus in the morning is uniformly distributed on\((0,8)\), whereas waiting time in the evening is uniformly distributed on\((0,10)\)independent of the morning waiting time.

a. If you take the bus each morning and evening for a week, what is your total expected waiting time?

b. What is the variance of your total waiting time?

c. What are the expected value and variance of the difference between morning and evening waiting times on a given day?

d. What are the expected value and variance of the difference between total morning waiting time and total evening waiting time for a particular week?

The number of contaminating particles on a silicon waferprior to a certain rinsing process was determined for eachwafer in a sample of size 100, resulting in the followingfrequencies:

Number of particles 0 1 2 3 4 5 6 7

Frequency1 2 3 12 11 15 18 10

Number of particles8 9 10 11 12 13 14

Frequency12 4 5 3 1 2 1

a. What proportion of the sampled wafers had at leastone particle? At least five particles?

b. What proportion of the sampled wafers had betweenfive and ten particles, inclusive? Strictly between fiveand ten particles?

c. Draw a histogram using relative frequency on thevertical axis. How would you describe the shape of thehistogram?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free