Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\rm{X}}\) denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is

\({\rm{F(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x < 0}}}\\{\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}}&{{\rm{0£ x < 2}}}\\{\rm{1}}&{{\rm{2\£ x}}}\end{array}} \right.\)

a. Calculate\({\rm{P(X£ 1)}}\).

b. Calculate\({\rm{P(}}{\rm{.5£ X£ 1)}}\).

c. Calculate\({\rm{P(X > 1}}{\rm{.5)}}\).

d. What is the median checkout duration \({\rm{\tilde \mu }}\) ? (solve\({\rm{5 = F(\tilde \mu ))}}\).

e. Obtain the density function\({\rm{f(x)}}\).

f. Calculate\({\rm{E(X)}}\).

g. Calculate \({\rm{V(X)}}\)and\({{\rm{\sigma }}_{\rm{X}}}\).

h. If the borrower is charged an amount \({\rm{h(X) = }}{{\rm{X}}^{\rm{2}}}\) when checkout duration is\({\rm{X}}\), compute the expected charge\({\rm{E(h(X))}}\).

Short Answer

Expert verified

(a) The solution is \({\rm{0}}{\rm{.25}}\).

(b) The solution is \({\rm{0}}{\rm{.1875}}\).

(c) The solution is \({\rm{0}}{\rm{.4375}}\).

(d) The solution is \({\rm{1}}{\rm{.414}}\).

(e) The solution is \({\rm{f(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x < 0}}}\\{\frac{{\rm{x}}}{{\rm{2}}}}&{{\rm{0\poundsx < 2}}}\\{\rm{1}}&{{\rm{2\poundsx}}}\end{array}} \right.\).

(f) The solution is \(\frac{{\rm{4}}}{{\rm{3}}}\).

(g) The solution is \({\rm{V(X) = 0}}{\rm{.2222;}}{{\rm{\sigma }}_{\rm{X}}}{\rm{ = 0}}{\rm{.4714}}\).

(h) The solution is \({\rm{2}}\).

Step by step solution

01

Definition

Probability simply refers to the likelihood of something occurring. We may talk about the probabilities of particular outcomes—how likely they are—when we're unclear about the result of an event. Statistics is the study of occurrences guided by probability.

02

Calculating \({\rm{P(X\pounds1)}}\)

The cdf \({\rm{F(x)}}\) is given as:

\({\rm{F(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x < 0}}}\\{\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}}&{{\rm{0\poundsx < 2}}}\\{\rm{1}}&{{\rm{2\poundsx}}}\end{array}} \right.\)

(a)

Then using the given cdf, we can write:

\(\begin{array}{l}{\rm{P(X\pounds1) = F(1) = }}\frac{{{{\rm{1}}^{\rm{2}}}}}{{\rm{4}}}\\{\rm{P(X\pounds1) = 0}}{\rm{.25}}\end{array}\)

Proposition: Let \({\rm{X}}\) be a continuous rv with pdf \({\rm{f(x)}}\) and cdf\({\rm{F(x)}}\). Then for any number a,

\({\rm{P(X\poundsa) = F(a)}}\)

03

Calculating \({\rm{P(}}{\rm{.5\poundsX\pounds1)}}\)

(b)

From the given cdf, we can write:

\(\begin{array}{c}{\rm{P(0}}{\rm{.5\poundsX\pounds1) = F(1) - F(0}}{\rm{.5)}}\\{\rm{ = }}\frac{{{{\rm{1}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.}}{{\rm{5}}^{\rm{2}}}}}{{\rm{4}}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{4}}}{\rm{ - }}\frac{{{\rm{0}}{\rm{.25}}}}{{\rm{4}}}\\{\rm{ = }}\frac{{{\rm{0}}{\rm{.75}}}}{{\rm{4}}}\\{\rm{P(0}}{\rm{.5\poundsX\pounds1) = 0}}{\rm{.1875}}\end{array}\)

Proposition: Let \({\rm{X}}\) be a continuous \({\rm{rv}}\) with pdf \({\rm{f(x)}}\) and\({\rm{cdfF(x)}}\). Then for any two numbers a and \({\rm{b}}\) with\({\rm{a < b}}\),

\({\rm{P(a\poundsX\poundsb) = F(b) - F(a)}}\)

04

Calculating \({\rm{P(X > 1}}{\rm{.5)}}\)

(c)

From the given cdf, we can write:

\(\begin{array}{c}{\rm{P(X > 1}}{\rm{.5) = 1 - F(1}}{\rm{.5)}}\\{\rm{ = 1 - }}\frac{{{\rm{1}}{\rm{.}}{{\rm{5}}^{\rm{2}}}}}{{\rm{4}}}\\{\rm{ = 1 - 0}}{\rm{.5625}}\\{\rm{P(X > 1}}{\rm{.5) = 0}}{\rm{.4375}}\end{array}\)

Proposition: Let \({\rm{X}}\) be a continuous rv with pdf \({\rm{f(x)}}\) and cdf\({\rm{F(x)}}\). Then for any number a,

\({\rm{P(X > a) = 1 - F(a)}}\)

05

What is the median checkout duration \({\rm{\tilde \mu }}\)

(d)

According to the definition of the median\({\rm{(\tilde \mu )}}\), we can write:

\({\rm{F(\tilde \mu ) = 0}}{\rm{.5}}\)

For the given cdf, we write it as

\(\begin{array}{l}\frac{{{{{\rm{\tilde \mu }}}^{\rm{2}}}}}{{\rm{4}}}{\rm{ = 0}}{\rm{.5}}{{{\rm{\tilde \mu }}}^{\rm{2}}}\\{\rm{ = 2\tilde \mu }}\\{\rm{ = }}\sqrt {\rm{2}} \\{\rm{ = 1}}{\rm{.414}}\end{array}\)

Definition: Let \({\rm{p}}\) be a number between \({\rm{0}}\) and \({\rm{1}}\) . The \({{\rm{(100p)}}^{{\rm{th }}}}\)percentile of the distribution of a continuous rv\({\rm{X}}\), denoted by \({{\rm{\eta }}_{\rm{p}}}\)), is defined by

\({\rm{p = F}}\left( {{{\rm{\eta }}_{\rm{p}}}} \right){\rm{ = }}\int_{{\rm{ - \currency}}}^{{{\rm{\eta }}_{\rm{p}}}} {\rm{f}} {\rm{(y)dy}}\)

For median the value of \({\rm{p}}\) is \({\rm{0}}{\rm{.5}}\)

06

Obtain the density function \({\rm{f(x)}}\)

(e)

For values of \({\rm{x}}\) for which \({{\rm{F}}^{\rm{\cent}}}{\rm{(x)}}\) exists, we define \({\rm{f(x)}}\) as: \({\rm{f(x) = }}{{\rm{F}}^{\rm{\cent}}}{\rm{(x)}}\)

Since \({\rm{F(x)}}\) is constant for interval \({\rm{x < 0}}\) and, hence \({\rm{f(x) = 0}}\) for these intervals.

For \({\rm{0\poundsx < 2,f(x)}}\) can be written as:

\({\rm{f(x) = }}\frac{{\rm{d}}}{{{\rm{dx}}}}\left( {\frac{{{{\rm{x}}^{\rm{2}}}}}{{\rm{4}}}} \right){\rm{ = }}\frac{{\rm{x}}}{{\rm{2}}}\)

Finally, we can write \({\rm{f(x)}}\) as:

\({\rm{f(x) = }}\left\{ {\begin{array}{*{20}{l}}{\rm{0}}&{{\rm{x < 0}}}\\{\frac{{\rm{x}}}{{\rm{2}}}}&{{\rm{0\poundsx < 2}}}\\{\rm{1}}&{{\rm{2\poundsx}}}\end{array}} \right.\)

Proposition: If \({\rm{X}}\) is a continuous rv with \({\rm{pdf(x)}}\) and cdf\({\rm{F(x)}}\), then at every \({\rm{x}}\) at which the derivative \({{\rm{F}}^{\rm{\cent}}}{\rm{(x)}}\) exists,

\({\rm{f(x) = }}{{\rm{F}}^{\rm{\cent}}}{\rm{(x)}}\)

07

Calculating \({\rm{E(X)}}\)

(f) For the pdf \({\rm{f(x)}}\) obtained in the last part:

\(\begin{array}{c}{\rm{E(X) = }}\int_{{\rm{ - \currency}}}^{\rm{\currency}} {\rm{x}} {\rm{ \times f(x) \times dx}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{2}} {\rm{x}} {\rm{ \times }}\frac{{\rm{x}}}{{\rm{2}}}{\rm{ \times dx}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{2}} {{{\rm{x}}^{\rm{2}}}} {\rm{ \times dx}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{x}}^{\rm{3}}}}}{{\rm{3}}}} \right)_{\rm{0}}^{\rm{2}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{2}}^{\rm{3}}}}}{{\rm{3}}}{\rm{ - 0}}} \right)\\{\rm{E(X) = }}\frac{{\rm{4}}}{{\rm{3}}}\end{array}\)

Definition: The expected or mean value of a continuous rv \({\rm{X}}\) with pdf \({\rm{f(x)}}\)is

\({\rm{\mu = E(X) = }}\int_{{\rm{ - \currency}}}^{\rm{\currency}} {\rm{x}} {\rm{ \times f(x) \times dx}}\)

08

Calculating \({\rm{V(X)}}\)and \({{\rm{\sigma }}_{\rm{X}}}\)

(g)

For the derived pdf\({\rm{f(x)}}\), we can write:

\(\begin{array}{c}{\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right){\rm{ = }}\int_{{\rm{ - \currency}}}^{\rm{\currency}} {{{\rm{x}}^{\rm{2}}}} {\rm{ \times f(x) \times dx}}\\{\rm{ = }}\int_{\rm{0}}^{\rm{2}} {{{\rm{x}}^{\rm{2}}}} {\rm{ \times }}\frac{{\rm{x}}}{{\rm{2}}}{\rm{ \times dx}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\int_{\rm{0}}^{\rm{2}} {{{\rm{x}}^{\rm{3}}}} {\rm{ \times dx}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{x}}^{\rm{4}}}}}{{\rm{4}}}} \right)_{\rm{0}}^{\rm{2}}\\{\rm{ = }}\frac{{\rm{1}}}{{\rm{2}}}\left( {\frac{{{{\rm{2}}^{\rm{4}}}}}{{\rm{4}}}{\rm{ - 0}}} \right)\\{\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right){\rm{ = 2}}\end{array}\)

As we have already calculated \({\rm{E(X)}}\) in the last part: \({\rm{E(X) = }}\frac{{\rm{4}}}{{\rm{3}}}\)

Proposition: \({\rm{V(X) = E}}\left( {{{\rm{X}}^{\rm{2}}}} \right){\rm{ - E(X}}{{\rm{)}}^{\rm{2}}}\)

substituting values of \({\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right)\) and\({\rm{E(X)}}\), we can write

\({\rm{V(X) = 2 - }}{\left( {\frac{{\rm{4}}}{{\rm{3}}}} \right)^{\rm{2}}}{\rm{ = 0}}{\rm{.2222}}\)

Now, standard deviation \(\left( {{{\rm{\sigma }}_{\rm{X}}}} \right)\) can be written as:

\(\begin{array}{c}{{\rm{\sigma }}_{\rm{X}}}{\rm{ = }}\sqrt {{\rm{V(X)}}} {\rm{ = }}\sqrt {{\rm{0}}{\rm{.2222}}} \\{\rm{ = 0}}{\rm{.4714}}\end{array}\)

Definition: If \({\rm{X}}\) is a continuous rv with pdf \({\rm{f(x)}}\) and \({\rm{h(X)}}\)is any function of\({\rm{X}}\), then

\({\rm{E(h(x)) = }}\int_{{\rm{ - \currency}}}^{\rm{\currency}} {\rm{h}} {\rm{(x) \times f(x) \times dx}}\)

09

If the borrower is charged an amount \({\rm{h(X) = }}{{\rm{X}}^{\rm{2}}}\) when checkout duration is \({\rm{X}}\), compute the expected charge \({\rm{E(h(X))}}\)

(h)

It is given that\({\rm{h(X) = }}{{\rm{X}}^{\rm{2}}}\), then

\({\rm{E(h(X)) = E}}\left( {{{\rm{X}}^{\rm{2}}}} \right)\)

As we have already calculated \({\rm{E}}\left( {{{\rm{X}}^{\rm{2}}}} \right)\) in the last part, hence

\({\rm{E(h(X)) = 2}}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a. If a constant cis added to each \({x_i}\)in a sample, yielding \({y_i} = {x_i} + c\), how do the sample mean and median of the \({y_i}'s\)relate to the mean and median of the\({x_i}'s\)? Verify your conjectures.

b. If each \({x_i}\)is multiplied by a constant c,yielding \({y_i} = c{x_i}\), answer the question of part (a). Again, verify your conjectures.

The article “Monte Carlo Simulation—Tool for Better Understanding of LRFD” (J. of Structural Engr., \({\rm{1993: 1586 - 1599}}\)) suggests that yield strength (\({\rm{ksi}}\)) for A36 grade steel is normally distributed with \({\rm{\mu = 43}}\) and \({\rm{\sigma = 4}}{\rm{.5 }}\)

a. What is the probability that yield strength is at most \({\rm{40}}\)? Greater than \({\rm{60}}\)?

b. What yield strength value separates the strongest \({\rm{75\% }}\) from the others?

Poly(3-hydroxybutyrate) (PHB), a semicrystallinepolymer that is fully biodegradable and biocompatible,is obtained from renewable resources. From a sustainabilityperspective, PHB offers many attractive propertiesthough it is more expensive to produce than standardplastics. The accompanying data on melting point(°C) for each of 12 specimens of the polymer using adifferential scanning calorimeter appeared in the article“The Melting Behaviour of Poly(3-Hydroxybutyrate)by DSC. Reproducibility Study” (Polymer Testing,2013: 215–220).

180.5 181.7 180.9 181.6 182.6 181.6

181.3 182.1 182.1 180.3 181.7 180.5

Compute the following:

  1. The sample range
  2. The sample variance \({{\bf{s}}^{\bf{2}}}\)from the definition (Hint:First subtract 180 from each observation.
  3. The sample standard deviation
  4. \({{\bf{s}}^{\bf{2}}}\)using the shortcut method

Consider the following sample of observations on coating thickness for low-viscosity paint ("Achieving a Target Value for a Manufacturing Process: \({\rm{A}}\)Case Study, \({\rm{97}}\)J. of Quality Technology, \({\rm{1992:22 - 26}}\)):

\(\begin{array}{*{20}{r}}{{\rm{.83}}}&{{\rm{.88}}}&{{\rm{.88}}}&{{\rm{1}}{\rm{.04}}}&{{\rm{1}}{\rm{.09}}}&{{\rm{1}}{\rm{.12}}}&{{\rm{1}}{\rm{.29}}}&{{\rm{1}}{\rm{.31}}}\\{{\rm{1}}{\rm{.48}}}&{{\rm{1}}{\rm{.49}}}&{{\rm{1}}{\rm{.59}}}&{{\rm{1}}{\rm{.62}}}&{{\rm{1}}{\rm{.65}}}&{{\rm{1}}{\rm{.71}}}&{{\rm{1}}{\rm{.76}}}&{{\rm{1}}{\rm{.83}}}\end{array}\)

Assume that the distribution of counting thickness is normal (a normal probability plot strongly supports this assumption).

a. Calculate a point estimate of the mean value of coating thickness, and state which estimator you used.

b. Calculate a point estimate of the median of the coating thickness distribution, and state which estimator you used.

C. Calculate a point estimate of the value that separates the largest of\({\rm{10\% }}\) all values in the thickness distribution from the remaining \({\rm{90\% }}\)and state which estimator you used. (Hint Express what you are trying to estimate in terms of \({\rm{\mu }}\)and \({\rm{\sigma }}\)

d. Estimate \({\rm{P}}\left( {{\rm{X < 1}}{\rm{.5}}} \right){\rm{,}}\)i.e., the proportion of all thickness values less than 1.5. (Hint: If you knew the values of \({\rm{\mu }}\)and \({\rm{\sigma }}\), you could calculate this probability. These values are not available, but they can be estimated.)

e. What is the estimated standard error of the estimator that you used in part (b)?

A sample of 20 glass bottles of a particular type was selected, and the internal pressure strength of each bottle was determined. Consider the following partial sample information:
median = 202.2 lower fourth = 196.0
upper fourth = 216.8

Three smallest observations 125.8 188.1 193.7
Three largest observations 221.3 230.5 250.2


a. Are there any outliers in the sample? Any extreme outliers?
b. Construct a boxplot that shows outliers, and comment on any interesting features.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free