(b):
It is required to minimize width
\(w = 2 \times {z_{\alpha /2}} \times \sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \)\(w = 2 \times {z_{\alpha /2}} \times \sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \)
However, since the total of 400 observations is to be made, one sample size is n and the other is 400-n (which makes it total of 400-n+n=400 ).
To minimize width w, look at w as a function of sample size n. To minimize function w, the following needs to minimized
\(f(n) = \frac{{s_1^2}}{{400 - n}} + \frac{{s_2^2}}{n}\)\(f(n) = \frac{{s_1^2}}{{400 - n}} + \frac{{s_2^2}}{n}\)
because m=400-n and width
\(w = 2 \times {z_{\alpha /2}} \times \sqrt {\frac{{s_1^2}}{{400 - n}} + \frac{{s_2^2}}{n}} \)\(w = 2 \times {z_{\alpha /2}} \times \sqrt {\frac{{s_1^2}}{{400 - n}} + \frac{{s_2^2}}{n}} \)
Taking derivative of f(n) in respect of n and equating to 0 the width will be minimized; thus
\(\) \(\begin{array}{l}{f^}(n) = {\left( {\frac{{900}}{{400 - n}} + \frac{{400}}{n}} \right)^}\\ = 900 \times \frac{1}{{{{(400 - n)}^2}}} - 400 \times \frac{1}{{{n^2}}}\end{array}\)
This yields
\(\begin{array}{l}9{n^2} = 4 \times {(400 - n)^2}\\9{n^2} = 4 \times \left( {40{0^2} - 2 \times 400 \times n + {n^2}} \right)\end{array}\)\(\begin{array}{l}9{n^2} = 4 \times {(400 - n)^2}\\9{n^2} = 4 \times \left( {40{0^2} - 2 \times 400 \times n + {n^2}} \right)\end{array}\)
or equally
\(m = 400 - {n_1} = 400 - 160 = 240\)\(5{n^2} + 3200n - 640,000 = 0\)
This is quadratic equation with two solutions
\(\begin{array}{l}{n_{12}} = \frac{{ - 3200 \pm \sqrt {320{0^2} - 4 \times 5 \times ( - 640,000)} }}{{2 \times 5}}\\{n_{12}} = \frac{{ - 3200 \pm 4800}}{{10}}\\{n_1} = \frac{{ - 3200 + 4800}}{{10}} = 160\\{n_2} = \frac{{ - 3200 - 4800}}{{10}} = - 800\end{array}\)
Choose \({n_1}\)because sample size can not be negative. The sample size m is therefore
\(m = 400 - {n_1} = 400 - 160 = 240\)