Determine the test statistic:
\(t = \frac{{\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }} = \frac{{138.52 - 149.07 - 0}}{{\sqrt {\frac{{7.7{6^2}}}{{15}} + \frac{{1.5{2^2}}}{{20}}} }} \approx - 5.191\)
Determine the degrees of freedom (rounded down to the nearest integer):
\(\Delta = \frac{{{{\left( {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/{n_1}} \right)}^2}}}{{{n_1} - 1}} + \frac{{{{\left( {s_2^2/{n_2}} \right)}^2}}}{{{n_2} - 1}}}} = \frac{{{{\left( {\frac{{7.7{6^2}}}{{15}} + \frac{{1.5{2^2}}}{{20}}} \right)}^2}}}{{\frac{{{{\left( {7.7{6^2}/15} \right)}^2}}}{{15 - 1}} + \frac{{{{\left( {1.5{2^2}/20} \right)}^2}}}{{20 - 1}}}} \approx 14\)
The P-value is the probability of obtaining the value of the test statistic, or a value more extreme. The P-value is the number (or interval) in the column title of Student's T distribution in the appendix containing the t-value in the row df=14 :
\(P < 2 \times 0.0005 = 0.001\)
If the P-value is less than or equal to the significance level, then the null hypothesis is rejected:
\(P < 0.01 \Rightarrow Reject {H_0}\)
There is sufficient evidence to support the claim that the true average zinc mass is different from the two types of batteries.