Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Toxaphene is an insecticide that has been identified as a pollutant in the Great Lakes ecosystem. To investigate the effect of toxaphene exposure on animals, groups of rats were given toxaphene in their diet. The article "Reproduction Study of Toxaphene in the Rat" ( J. of Environ. Sci. Health, 1988: 101-126) reports weight gains (in grams) for rats given a low dose (4 ppm) and for control rats whose diet did not include the insecticide. The sample standard deviation for 23 female control rats was \(32\;g\) and for 20 female low-dose rats was\(54\;g\). Does this data suggest that there is more variability in low-dose weight gains than in control weight gains? Assuming normality, carry out a test of hypotheses at significance level .05.

Short Answer

Expert verified

Reject null hypothesis and there is more variability in the low dose weight gains.

Step by step solution

01

To find the hypothesis

Testing null hypothesis \({H_0}:\sigma _1^2 = \sigma _2^2\)versus alternative hypothesis \({H_a}\)under the assumption that the two populations are normal and independent

Depending on alternative hypothesis \({H_a}\)the \(P\)value is corresponding area under the \({F_{m - 1,n - 1}}\)curve.

The hypotheses of interest are \(H:0:{\sigma _1} = \sigma _2^2\) versus\({H_a}:\sigma _1^2 > \sigma _2^2\), where \({\sigma _1},{\sigma _2}\)denote the variance in weight pain for low-dose treatment and variance in weight gain for control condition, respectively.

The corresponding sample standard deviations are \({s_1} = 54\)and \({s_2} = 32.\)The degrees of freedom are \(m - 1 = 20 - 1 = 19\)and \(n - 1 = 23 - 1 = 22.\)

02

Finding test statistic

The test statistic is,

\(f = \frac{{s_1^2}}{{s_2^2}}\)

Thus, the value of the statistic is

\(\begin{array}{c}f = \frac{{{{54}^2}}}{{{{32}^2}}}\\ = 2.85\end{array}\)

At significance level \(\alpha = 0.01,\)and mentioned degrees of freedom, value \({F_{0.01,19,22}}\) is

\({F_{0.01,19,22}} = 2.0837\)

03

Decision rule and conclusion

The test is upper sided, and \({F_{0.05,19,22}} = 2.0837 < 2.85 = f\)

Hence reject null hypothesis at given significance level.

The \(P\)value could have been used as well. For the upper sided test, the \(P\) value is

\(\begin{array}{c}P = P(F > 2.85)\\ = 0.010036\end{array}\)

Where \(F\)has Fisher's distribution with degrees of freedom \({\nu _1} = 19\)and\({\nu _2} = 22\). The value was computed using a software (you can use table estimate the value as mentioned above). Since for the \(P\)the following holds

\(P = 0.010036 < 0.05 = \alpha \)

Reject null hypothesis at any given significance level. Hence there is more variability in the low dose weight gains.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Lactation promotes a temporary loss of bone mass to provide adequate amounts of calcium for milk production. The paper "Bone Mass Is Recovered from Lactation to Postweaning in Adolescent Mothers with Low Calcium Intakes" (Amer. J. of Clinical Nutr., 2004: 1322-1326) gave the following data on total body bone mineral content (TBBMC) (g) for a sample both during lactation (L) and in the postweaning period (P).

\(\begin{array}{*{20}{c}}{Subject}&{}&{}&{}&{}&{}&{}&{}&{}&{}\\1&2&3&4&5&6&7&8&9&{10}\\{1928}&{2549}&{2825}&{1924}&{1628}&{2175}&{2114}&{2621}&{1843}&{2541}\\{2126}&{2885}&{2895}&{1942}&{1750}&{2184}&{2164}&{2626}&{2006}&{2627}\end{array}\)

a. Does the data suggest that true average total body bone mineral content during postweaning exceeds that during lactation by more than\(25\;g\)? State and test the appropriate hypotheses using a significance level of .05. (Note: The appropriate normal probability plot shows some curvature but not enough to cast substantial doubt on a normality assumption.)

b. Calculate an upper confidence bound using a\(95\% \)confidence level for the true average difference between TBBMC during postweaning and during lactation.

c. Does the (incorrect) use of the two-sample\(t\)test to test the hypotheses suggested in (a) lead to the same

Example\(7.11\)gave data on the modulus of elasticity obtained\(1\)minute after loading in a certain configuration. The cited article also gave the values of modulus of elasticity obtained\(4\)weeks after loading for the same lumber specimens. The data is presented here. \(1\begin{array}{*{20}{c}}{Observation}&{1 min}&{4 weeks}&{Difference}\\1&{10,490}&{9,110}&{1380}\\2&{16,620}&{13,250}&{3370}\\3&{17,300}&{14,720}&{2580}\\4&{15,480}&{12,740}&{2740}\\5&{12,970}&{10,120}&{2850}\\6&{17,260}&{14,570}&{2690}\\7&{13,400}&{11,220}&{2180}\\8&{13,900}&{11,100}&{2800}\\9&{13,630}&{11,420}&{2210}\\{10}&{13,260}&{10,910}&{2350}\\{11}&{14,370}&{12,110}&{2260}\\{12}&{11,700}&{8,620}&{3080}\\{13}&{15,470}&{12,590}&{2880}\\{14}&{17,840}&{15,090}&{2750}\\{15}&{14,070}&{10,550}&{3520}\\{16}&{14,760}&{12,230}&{2530}\end{array}\)

Calculate and interpret an upper confidence bound for the true average difference between\(1\)-minute modulus and\(4\)-week modulus; first check the plausibility of any necessary assumptions.

Consider the following two questions designed to assess quantitative literacy:

a. What is \[15\% \]of 1000?

b. A store is offering an \[15\% \]off sale on all TVs. The most popular television is normally priced at $1000. How much money would a customer save on the television during this sale?

Suppose the first question is asked of 200 randomly selected college students, with 164 answering correctly; the second one is asked of a different random sample of 200 college students, resulting in 140 correct responses (the sample percentages agree with those given in the article "Using the Right Yardstick: Assessing Financial Literacy Measures by Way of Financial Well-Being," J. of Consumer Affairs, 2013: 243-262; the investigators found that those who answered such questions correctly, particularly questions with context, were significantly more successful in their investment decisions than those who did not answer correctly). Carry out a test of hypotheses at significance level 0.05 to decide if the true proportion of correct responses to the question without context exceeds that for the one with context.

a. Show for the upper-tailed test with \({\sigma _1}\) and \({\sigma _2}\)known that as either\(m\) or\(n\) increases, \(\beta \)decreases when \({\mu _1} - {\mu _2} > {\Delta _0}\).

b. For the case of equal sample sizes \(\left( {m = n} \right)\)and fixed \(\alpha \),what happens to the necessary sample size \(n\) as \(\beta \) is decreased, where \(\beta \) is the desired type II error probability at a fixed alternative?

An experimenter wishes to obtain a CI for the difference between true average breaking strength for cables manufactured by company I and by company II. Suppose breaking strength is normally distributed for both types of cable with s1 5 30 psi and s2 5 20 psi.

  1. If costs dictate that the sample size for the type I cable should be three times the sample size for the type II cable, how many observations are required if the 99% CI is to be no wider than 20 psi?
  2. Suppose a total of 400 observations is to be made. How many of the observations should be made on type I cable samples if the width of the resulting interval is to be a minimum?
See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free