Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "'The Effects of a Low-Fat, Plant-Based Dietary Intervention on Body Weight, Metabolism, and Insulin Sensitivity in Postmenopausal Women" (Amer. J. of Med., \(2005: 991 - 997\)) reported on the results of an experiment in which half of the individuals in a group of\(64\)postmenopausal overweight women were randomly assigned to a particular vegan diet, and the other half received a diet based on National Cholesterol Education Program guidelines. The sample mean decrease in body weight for those on the vegan diet was\(5.8\;kg\), and the sample SD was\(3.2\), whereas for those on the control diet, the sample mean weight loss and standard deviation were\(3.8\)and\(2.8\), respectively. Does it appear the true average weight loss for the vegan diet exceeds that for the control diet by more than\(1\;kg\)? Carry out an appropriate test of hypotheses at significance level .05.

Short Answer

Expert verified

Do not reject null hypothesis.

Step by step solution

01

Find the value of normal distribution

Denote with\({\mu _1}\)the true average of the mean body mass decrease for vegan diet and with \({\mu _2}\) for the control diet.

Given two normal distributions, the random variable (standardized)

\(T = \frac{{\bar X - \bar Y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{S_1^2}}{m} + \frac{{S_2^2}}{n}} }}\)

has approximately students \(t\) distribution with degrees of freedom\(\nu \), where \(\nu \) is

\(\nu = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}}\)

has to be rounded down to the nearest integer.

The two-sample \(t\) test for testing \({H_0}:{\mu _1} - {\mu _2} = {\Delta _0}\) uses the following value of test statistic

\(t = \frac{{\bar x - \bar y - {\Delta _0}}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }}\)

For the adequate alternative hypothesis the adequate area under the \({t_\nu }\) curve is calculated is the \(P\) value.

02

Determine the degree of freedom

The hypotheses of interest are \({H_0}:{\mu _1} - {\mu _2} = 1\) versus \({H_1}:{\mu _1} - {\mu _2} > 1\) (exceeds by more than 1 kg). Using the given data in the exercise, the \(t\) value is

\(t = \frac{{\bar x - \bar y - {\Delta _0}}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }} = \frac{{5.8 - 3.8 - 1}}{{\sqrt {\frac{{{{3.2}^2}}}{{32}} + \frac{{{{2.8}^2}}}{{32}}} }} = 1.33\)

and the corresponding degrees of freedom can be computed using formula

\(\nu {\rm{ }} = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}} = \frac{{{{\left( {\frac{{{{3.2}^2}}}{{32}} + \frac{{{{2.8}^2}}}{{32}}} \right)}^2}}}{{\frac{{{{\left( {{{3.2}^2}/32} \right)}^2}}}{{32 - 1}} + \frac{{{{\left( {{{2.8}^2}/32} \right)}^2}}}{{32 - 1}}}} = 60.93\)

The \(P\) value for one sided testing (upper) is

\(P(T > 1.33) = 0.094\)

where the value was computed using software (see the table in the appendix as well). Since

\(P(T > 1.33) = 0.094P = 0.094 > 0.05\)

do not reject null hypothesis

at \(0.05\)level. There are not enough evidence to support the claim that the true average weight loss for the vegan diet exceeds the true average weight loss for the control died more than 1 kilogram.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Anorexia Nervosa (AN) is a psychiatric condition leading to substantial weight loss among women who are fearful of becoming fat. The article "Adipose Tissue Distribution After Weight Restoration and Weight Maintenance in Women with Anorexia Nervosa" (Amer. J. of ClinicalNutr., 2009: 1132-1137) used whole-body magnetic resonance imagery to determine various tissue characteristics for both an AN sample of individuals who had undergone acute weight restoration and maintained their weight for a year and a comparable (at the outset of the study) control sample. Here is summary data on intermuscular adipose tissue (IAT; kg).

Assume that both samples were selected from normal distributions.

a. Calculate an estimate for true average IAT under the described AN protocol, and do so in a way that conveys information about the reliability and precision of the estimation.

b. Calculate an estimate for the difference between true average AN IAT and true average control IAT, and do so in a way that conveys information about the reliability and precision of the estimation. What does your estimate suggest about true average AN IAT relative to true average control IAT?

Using the traditional formula, a \(95\% \) CI for \({p_1} - {p_2}\)is to be constructed based on equal sample sizes from the two populations. For what value of \(n( = m)\)will the resulting interval have a width at most of .1, irrespective of the results of the sampling?

Refer to Example 9.7. Does the data suggest that the standard deviation of the strength distribution for fused specimens is smaller than that for not-fused specimens? Carry out a test at significance level .01.

The accompanying data on response time appeared in the article "'The Extinguishment of Fires Using Low-Flow Water Hose Streams-Part II" (Fire Technology, 1991: 291-320).

Good visibility

.43 1.17 .37 .47 .68 .58 .50 2.75

Poor visibility

1.47 .80 1.58 1.53 4.33 4.23 3.25 3.22

The authors analyzed the data with the pooled t test. Does the use of this test appear justified? (Hint: Check for normality.

The z percentiles for n=8 are -1.53, -.89, -.49, -.15 , .15, .49, .89, and 1.53.)

The article "Urban Battery Litter" cited in Example 8.14 gave the following summary data on zinc mass (g) for two different brands of size D batteries:

Brand Sample Size Sample Mean Sample SD

Duracell 15 138.52 7.76

Energizer 20 149.07 1.52

Assuming that both zinc mass distributions are at least approximately normal, carry out a test at significance level .05 to decide whether true average zinc mass is different for the two types of batteries.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free