Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The degenerative disease osteoarthritis most frequently affects weight-bearing joints such as the knee. The article "Evidence of Mechanical Load Redistribution at the Knee Joint in the Elderly When Ascending Stairs and Ramps" (Annals of Biomed. Engr., \(2008: 467 - 476\)) presented the following summary data on stance duration (ms) for samples of both older and younger adults.

\(\begin{array}{*{20}{l}}{Age\;\;\;\;\;\;\;Sample Size\;\;Sample Mean\;\;Sample SD}\\{\;Older\;\;\;\;\;28\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;801\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;117}\\{Younger\;16\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;780\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;72}\end{array}\)

Assume that both stance duration distributions are normal.

a. Calculate and interpret a\(99\% \)CI for true average stance duration among elderly individuals.

b. Carry out a test of hypotheses at significance level\(.05\)to decide whether true average stance duration is larger among elderly individuals than among younger individuals.

Short Answer

Expert verified

(a) \(( - 56.0945,98.0945)\)

(b) There is not sufficient evidence to support the claim that the true average stance duration is larger among elderly individuals than among younger individuals.

Step by step solution

01

a)Step 1: Find the end point of confidence interval

\(\begin{array}{l}{{\bar x}_1} = 801\\{{\bar x}_2} = 780\\{n_1} = 28\\{n_2} = 16\\{s_1} = 117\\{s_2} = 72\\c = 99\% = 0.99\\\alpha = 0.05\end{array}\)

Determine the degrees of freedom (rounded down to the nearest integer):

\(\Delta = \frac{{{{\left( {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/{n_1}} \right)}^2}}}{{{n_1} - 1}} + \frac{{{{\left( {s_2^2/{n_2}} \right)}^2}}}{{{n_2} - 1}}}} = \frac{{{{\left( {\frac{{{{117}^2}}}{{28}} + \frac{{{{72}^2}}}{{16}}} \right)}^2}}}{{\frac{{{{\left( {{{117}^2}/28} \right)}^2}}}{{28 - 1}} + \frac{{{{\left( {{{72}^2}/16} \right)}^2}}}{{16 - 1}}}} \approx 41 > 40\)

Determine the t-value by looking in the row starting with degrees of freedom \(df = 40\) and in the column with\(1 - c/2 = 0.005\) in the Student's distribution table in the appendix:

\({t_{\alpha /2}} = 2.704\)

The margin of error is then:

\(E = {t_{\alpha /2}} \cdot \sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} = 2.704 \cdot \sqrt {\frac{{{{117}^2}}}{{28}} + \frac{{{{72}^2}}}{{16}}} \approx 77.0945\)

The endpoints of the confidence interval for\({\mu _1} - {\mu _2}\)are:

\(\begin{array}{l}\left( {{{\bar x}_1} - {{\bar x}_2}} \right) - E = (801 - 780) - 77.0945 = 21 - 77.0945 = - 56.0945\\\left( {{{\bar x}_1} - {{\bar x}_2}} \right) + E = (801 - 780) + 77.0945 = 21 + 77.0945 = 98.0945\end{array}\)

02

b)Step 2: Determine the test statistic

(b) Given claim: larger

The claim is either the null hypothesis or the alternative hypothesis. The null hypothesis and the alternative hypothesis state the opposite of each other. The null hypothesis needs to contain the value mentioned in the claim.

\(\begin{array}{l}{H_0}:{\mu _1} = {\mu _2}\\{H_a}:{\mu _1} > {\mu _2}\end{array}\)

Determine the test statistic:

\(t = \frac{{{{\bar x}_1} - {{\bar x}_2}}}{{\sqrt {\frac{{s_1^2}}{{{n_1}}} + \frac{{s_2^2}}{{{n_2}}}} }} = \frac{{801 - 780}}{{\sqrt {\frac{{{{117}^2}}}{{28}} + \frac{{{{72}^2}}}{{16}}} }} \approx 0.737\)

The\({\rm{P}}\)-value is the probability of obtaining the value of the test statistic, or a value more extreme. The\({\rm{P}}\)-value is the number (or interval) in the column title of Student's T distribution in the appendix containing the t-value in the row\(df = 40\):

\(P > 0.10\)

If the P-value is less than or equal to the significance level, then the null hypothesis is rejected:

\(P > 0.05 \Rightarrow {\rm{ Fail to reject }}{H_0}\)

There is not sufficient evidence to support the claim that the true average stance duration is larger among elderly individuals than among younger individuals.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reliance on solid biomass fuel for cooking and heating exposes many children from developing countries to high levels of indoor air pollution. The article โ€œDomestic Fuels, Indoor Air Pollution, and Childrenโ€™s Healthโ€ (Annals of the N.Y. Academy of Sciences, \(2008:209 - 217\)) presented information on various pulmonary characteristics in samples of children whose households in India used either biomass fuel or liquefied petroleum gas (\(LPG\)). For the \(755\) children in biomass households, the sample mean peak expiratory flow (a personโ€™s maximum speed of expiration) was \(3.30L/s\), and the sample standard deviation was \(1.20\). For the \(750\) children whose households used liquefied petroleum gas, the sample mean \(PEF\) was \(4.25\) and the sample standard deviation was \(1.75\).

a. Calculate a confidence interval at the \(95\% \) confidence level for the population mean \(PEF\) for children in biomass households and then do likewise for children in \(LPG\) households. What is the simultaneous confidence level for the two intervals?

b. Carry out a test of hypotheses at significance level \(.01\) to decide whether true average \(PEF\) is lower for children in biomass households than it is for children in \(LPG\) households (the cited article included a P-value for this test)

c. \(FE{V_1}\), the forced expiratory volume in \(1\) second, is another measure of pulmonary function. The cited article reported that for the biomass households the sample mean FEV1 was \(2.3L/s\) and the sample standard deviation was \(.5L/s\). If this information is used to compute a \(95\% \) \(CI\) for population mean \(FE{V_1}\), would the simultaneous confidence level for this interval and the first interval calculated in (a) be the same as the simultaneous confidence level determined there? Explain

Toxaphene is an insecticide that has been identified as a pollutant in the Great Lakes ecosystem. To investigate the effect of toxaphene exposure on animals, groups of rats were given toxaphene in their diet. The article "Reproduction Study of Toxaphene in the Rat" ( J. of Environ. Sci. Health, 1988: 101-126) reports weight gains (in grams) for rats given a low dose (4 ppm) and for control rats whose diet did not include the insecticide. The sample standard deviation for 23 female control rats was \(32\;g\) and for 20 female low-dose rats was\(54\;g\). Does this data suggest that there is more variability in low-dose weight gains than in control weight gains? Assuming normality, carry out a test of hypotheses at significance level .05.

Pilates is a popular set of exercises for the treatment of individuals with lower back pain. The method has six basic principles: centering, concentration, control, precision, flow, and breathing. The article โ€œEfficacy of the Addition of Modified Pilates Exercises to a Minimal Intervention in Patients with Chronic Low Back Pain: A Randomized Controlled Trialโ€ (Physical Therapy, \(2013:309 - 321\)) reported on an experiment involving \(86\) subjects with nonspecific low back pain. The participants were randomly divided into two groups of equal size. The first group received just educational materials, whereas the second group participated in \(6\) weeks of Pilates exercises. The sample mean level of pain (on a scale from \(0\) to \(10\)) for the control group at a \(6\)-week follow-up was \(5.2\) and the sample mean for the treatment group was \(3.1\); both sample standard deviations were \(2.3\).

a. Does it appear that true average pain level for the control condition exceeds that for the treatment condition? Carry out a test of hypotheses using a significance level of \(.01\) (the cited article reported statistical significance at this a, and a sample mean difference of \(2.1\) also suggests practical significance)

b. Does it appear that true average pain level for the control condition exceeds that for the treatment condition by more than \(1\)? Carry out a test of appropriate hypotheses

Consider the accompanying data on breaking load (\(kg/25\;mm\)width) for various fabrics in both an unabraded condition and an abraded condition (\(^6\)The Effect of Wet Abrasive Wear on the Tensile Properties of Cotton and Polyester-Cotton Fabrics," J. Testing and Evaluation, \(\;1993:84 - 93\)). Use the paired\(t\)test, as did the authors of the cited article, to test\({H_0}:{\mu _D} = 0\)versus\({H_a}:{\mu _D} > 0\)at significance level . \(01\)

Example\(7.11\)gave data on the modulus of elasticity obtained\(1\)minute after loading in a certain configuration. The cited article also gave the values of modulus of elasticity obtained\(4\)weeks after loading for the same lumber specimens. The data is presented here. \(1\begin{array}{*{20}{c}}{Observation}&{1 min}&{4 weeks}&{Difference}\\1&{10,490}&{9,110}&{1380}\\2&{16,620}&{13,250}&{3370}\\3&{17,300}&{14,720}&{2580}\\4&{15,480}&{12,740}&{2740}\\5&{12,970}&{10,120}&{2850}\\6&{17,260}&{14,570}&{2690}\\7&{13,400}&{11,220}&{2180}\\8&{13,900}&{11,100}&{2800}\\9&{13,630}&{11,420}&{2210}\\{10}&{13,260}&{10,910}&{2350}\\{11}&{14,370}&{12,110}&{2260}\\{12}&{11,700}&{8,620}&{3080}\\{13}&{15,470}&{12,590}&{2880}\\{14}&{17,840}&{15,090}&{2750}\\{15}&{14,070}&{10,550}&{3520}\\{16}&{14,760}&{12,230}&{2530}\end{array}\)

Calculate and interpret an upper confidence bound for the true average difference between\(1\)-minute modulus and\(4\)-week modulus; first check the plausibility of any necessary assumptions.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free