Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The article "The Influence of Corrosion Inhibitor and Surface Abrasion on the Failure of Aluminum-Wired Twist-On Connections" (IEEE Trans. on Components, Hybrids, and Manuf. Tech., 1984: 20-25) reported data on potential drop measurements for one sample of connectors wired with alloy aluminum and another sample wired with EC aluminum. Does the accompanying SAS output suggest that the true average potential drop for alloy connections (type 1) is higher than that wfor EC connections (as stated in the article)? Carry out the appropriate test using a significance level of .01. In reaching your conclusion, what type of error might you have committed?

(Note: SAS reports the\(P\)-value for a two-tailed test.)

\(\begin{array}{*{20}{c}}{ Type }&{}&N&{ Mean }&{ Std Dev }&{ Std Error }\\1&{20}&{17.49900000}&{0.55012821}&{0.12301241}&{}\\2&{20}&{16.90000000}&{0.48998389}&{0.10956373}&{}\\{}&{ Variances }&T&{ DF }&{Prob > |T|}&{}\\{ Unequal }&{3.6362}&{37.5}&{0.0008}&{}&{}\\{}&{ Equal }&{3.6362}&{38.0}&{0.0008}&{}\end{array}\)

Short Answer

Expert verified

Reject the null hypothesis.

Step by step solution

01

Testing the hypotheses

Let\({\mu _1}\)denotes the true average potential drop for alloy connections and\({\mu _2}\)denotes the true average for the EC connections.

The hypotheses of interest are\({H_0}:{\mu _1} - {\mu _2} = 0\)versus\({H_a}:{\mu _1} - {\mu _2} > 0\).

Testing this hypothesis, the results provided in the exercise, when the variances are unequal (see exercise output), is

\(t = 3.6362,df = 37.5\).

The pvalue for two tailed test is 0.0008.

The the p- value for the upper tailed test can be computed as

\(P = \frac{1}{2} \cdot 0.0008 = 0.0004\)

Since

\(\begin{array}{c}P = 0.0004\\ < 0.01\end{array}\)

reject the null hypothesis at 1% level of significance.

The type I error could have been made- rejecting the null hypothesis when it is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Lactation promotes a temporary loss of bone mass to provide adequate amounts of calcium for milk production. The paper "Bone Mass Is Recovered from Lactation to Postweaning in Adolescent Mothers with Low Calcium Intakes" (Amer. J. of Clinical Nutr., 2004: 1322-1326) gave the following data on total body bone mineral content (TBBMC) (g) for a sample both during lactation (L) and in the postweaning period (P).

\(\begin{array}{*{20}{c}}{Subject}&{}&{}&{}&{}&{}&{}&{}&{}&{}\\1&2&3&4&5&6&7&8&9&{10}\\{1928}&{2549}&{2825}&{1924}&{1628}&{2175}&{2114}&{2621}&{1843}&{2541}\\{2126}&{2885}&{2895}&{1942}&{1750}&{2184}&{2164}&{2626}&{2006}&{2627}\end{array}\)

a. Does the data suggest that true average total body bone mineral content during postweaning exceeds that during lactation by more than\(25\;g\)? State and test the appropriate hypotheses using a significance level of .05. (Note: The appropriate normal probability plot shows some curvature but not enough to cast substantial doubt on a normality assumption.)

b. Calculate an upper confidence bound using a\(95\% \)confidence level for the true average difference between TBBMC during postweaning and during lactation.

c. Does the (incorrect) use of the two-sample\(t\)test to test the hypotheses suggested in (a) lead to the same

The article "'The Accuracy of Stated Energy Contents of Reduced-Energy, Commercially Prepared Foods" (J. of the Amer. Dietetic Assoc.s 2010: 116-123) presented the accompanying data on vendor-stated gross energy and measured value (both in kcal) for 10 different supermarket convenience meals):

Meal: 1 2 3 4 5 6 7 8 9 10

Stated: 180 220 190 230 200 370 250 240 80 180

Measured: 212 319 231 306 211 431 288 265 145 228

Carry out a test of hypotheses to decide whether the true average % difference from that stated differs from zero. (Note: The article stated "Although formal statistical methods do not apply to convenience samples, standard statistical tests were employed to summarize the data for exploratory purposes and to suggest directions for future studies.")

Which way of dispensing champagne, the traditional vertical method or a tilted beer-like pour,preserves more of the tiny gas bubbles that improve flavor and aroma? The following data was reported in the article โ€œOn the Losses of Dissolved \(C{O_2}\) during Champagne Servingโ€ (J. Agr. Food Chem., 2010: 8768โ€“8775)

\(\begin{array}{*{20}{c}}{ Temp \left( {^^\circ C} \right)}&{ Type of Pour }&n&{ Mean (g/L)}&{ SD }\\{18}&{ Traditional }&4&{4.0}&{.5}\\{18}&{ Slanted }&4&{3.7}&{.3}\\{12}&{ Traditional }&4&{3.3}&{.2}\\{12}&{ Slanted }&4&{2.0}&{.3}\\{}&{}&{}&{}&{}\end{array}\)

Assume that the sampled distributions are normal.

a. Carry out a test at significance level \(.01\) to decide whether true average\(C{O_2}\)loss at \(1{8^o}C\) for the traditional pour differs from that for the slanted pour.

b. Repeat the test of hypotheses suggested in (a) for the \(1{2^o}\) temperature. Is the conclusion different from that for the \(1{8^o}\) temperature? Note: The \(1{2^o}\) result was reported in the popular media

How does energy intake compare to energy expenditure? One aspect of this issue was considered in the article โ€œMeasurement of Total Energy Expenditure by the Doubly Labelled Water Method in Professional Soccer Playersโ€ (J. of Sports Sciences, 2002: 391โ€“397), which contained the accompanying data (MJ/day).

Test to see whether there is a significant difference between intake and expenditure. Does the conclusion depend on whether a significance level of .05, .01, or .001 is used?

Persons having Reynaudโ€™s syndrome are apt to suffer a sudden impairment of blood circulation in fingers and toes. In an experiment to study the extent of this impairment, each subject immersed a forefinger in water and the resulting heat output \((cal/c{m^2}/min)\) was measured. For \(m = 10\) subjects with the syndrome, the average heat output was \(\bar x = .64\), and for \(n = 10\) non-sufferers, the average output was \(2.05\). Let \({\mu _1}\) and \({\mu _2}\) denote the true average heat outputs for the two types of subjects. Assume that the two distributions of heat output are normal with \({\sigma _1} = .2\) and \({\sigma _2} = .4\).

a. Consider testing \({H_0}:{\mu _1} - {\mu _2} = - 1.0\) versus \({H_2}:{\mu _1} - {\mu _2} < - 1.0\)at level . \(01\). Describe in words what \({H_a}\) says, and then carry out the test.

b. What is the probability of a type II error when the actual difference between \({\mu _1}\) and \({\mu _2}\) is \({\mu _1} - {\mu _2} = - 1.2?\)

c. Assuming that \(m = n\), what sample sizes are required to ensure that \(\beta = .1\) when \({\mu _1} - {\mu _2} = - 1.2?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free