Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose \({\mu _1}\) and \({\mu _2}\) are true mean stopping distances at \(50mph\) for cars of a certain type equipped with two different types of braking systems. Use the two-sample t test at significance level

t test at significance level \(.01\) to test \({H_0}:{\mu _1} - {\mu _2} = - 10\) versus \({H_a}:{\mu _1} - {\mu _2} < - 10\) for the following data: \(m = 6,\;\;\;\bar x = 115.7,{s_1} = 5.03,n = 6,\bar y = 129.3,\;\)and \({s_2} = 5.38.\)

Short Answer

Expert verified

the solution is

do not reject null hypothesis

Step by step solution

01

calculate degree of freedom

for the given hypothesis

\({H_0}:{\mu _1} - {\mu _2} = - 10 vs {H_a}:{\mu _1} - {\mu _2} < - 10\)

The random variable (standardized) is given two normal distributions.

\(T = \frac{{\bar X - \bar Y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{S_1^2}}{m} + \frac{{S_2^2}}{n}} }}\nu \)

has a \(t\) distribution with degrees of freedom \(\nu \), where \(\nu \) is the number of students.

\(\nu = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}}\)

The number must be rounded to the nearest integer.

To compute the test statistic, all values are provided.

\(\begin{array}{l}t = \frac{{\bar x - \bar y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }} = \frac{{115.7 - 129.3 - ( - 10)}}{{\sqrt {\frac{{5.0{3^2}}}{6} + \frac{{5.3{8^2}}}{6}} }}\\ = \frac{{ - 3.6}}{{3.007}} = - 1.2\end{array}\)

The equivalent degrees of freedom can be calculated using the following formula.

\(\begin{array}{l}\nu = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}} = \frac{{{{\left( {\frac{{5.0{3^2}}}{6} + \frac{{5.3{8^2}}}{6}} \right)}^2}}}{{\frac{{{{\left( {5.0{3^2}/6} \right)}^2}}}{{6 - 1}} + \frac{{{{\left( {5.3{8^2}/6} \right)}^2}}}{{6 - 1}}}}\\ = \frac{{{{(4.2168 + 4.8241)}^2}}}{{\frac{{{{(4.2168)}^2}}}{5} + \frac{{4.824{1^2}}}{5}}} = 9.96\end{array}\)

02

probability

The number must be rounded down to \(9\) in order to acquire the matching degrees of freedom, implying that.

\(\nu = 9\)

\({\rm{d f}}\). The \(P\) value for such test hypotheses is the area to the left of the \(t\) value under the students \(t\)distribution with degrees of freedom \(9\), and the \(P\) value is.

\(P(T \le - 1.2) = 0.13\)

If \(T\) is a random variable with the student distribution given, and the probability was calculated using the appendix table.

With significance level \(0.01\).

Because \(0.01 < 0.13\)

03

conclusion

do not reject null hypothesis

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An experiment was performed to compare the fracture toughness of high-purity \(18Ni\) maraging steel with commercial-purity steel of the same type (Corrosion Science, 1971: 723โ€“736). For \(m = 32\)specimens, the sample average toughness was \(\overline x = 65.6\) for the high purity steel, whereas for \(n = 38\)specimens of commercial steel \(\overline y = 59.8\). Because the high-purity steel is more expensive, its use for a certain application can be justified only if its fracture toughness exceeds that of commercial purity steel by more than 5. Suppose that both toughness distributions are normal.

a. Assuming that \({\sigma _1} = 1.2\) and \({\sigma _2} = 1.1\), test the relevant hypotheses using \(\alpha = .001\).

b. Compute \(\beta \) for the test conducted in part (a) when \({\mu _1} - {\mu _2} = 6.\)

Torsion during hip external rotation (ER) and extension may be responsible for certain kinds of injuries in golfers and other athletes. The article "Hip Rotational Velocities During the Full Golf Swing" (J. of Sports Science and Medicine, 2009: 296-299) reported on a study in which peak ER velocity and peak IR (internal rotation) velocity (both in deg.sec\(^{ - 1}\)) were determined for a sample of 15 female collegiate golfers during their swings. The following data was supplied by the article's authors.

\(\begin{aligned}{*{20}{r}}{ Golfer }&{ \backslash multicolumn1c ER }&{ IR }&{ \backslash multicolumn1c diff }&{z perc }\\1&{ - 130.6}&{ - 98.9}&{ - 31.7}&{ - 1.28}\\2&{ - 125.1}&{ - 115.9}&{ - 9.2}&{ - 0.97}\\3&{ - 51.7}&{ - 161.6}&{109.9}&{0.34}\\4&{ - 179.7}&{ - 196.9}&{17.2}&{ - 0.73}\\5&{ - 130.5}&{ - 170.7}&{40.2}&{ - 0.34}\\6&{ - 101.0}&{ - 274.9}&{173.9}&{0.97}\\7&{ - 24.4}&{ - 275.0}&{250.6}&{1.83}\\8&{ - 231.1}&{ - 275.7}&{44.6}&{ - 0.17}\\9&{ - 186.8}&{ - 214.6}&{27.8}&{ - 0.52}\\{10}&{ - 58.5}&{ - 117.8}&{59.3}&{0.00}\\{11}&{ - 219.3}&{ - 326.7}&{107.4}&{0.17}\\{12}&{ - 113.1}&{ - 272.9}&{159.8}&{0.73}\\{13}&{ - 244.3}&{ - 429.1}&{184.8}&{1.28}\\{14}&{ - 184.4}&{ - 140.6}&{ - 43.8}&{ - 1.83}\\{15}&{ - 199.2}&{ - 345.6}&{146.4}&{0.52}\\{}&{}&{}&{}&{}\end{aligned}\)

a. Is it plausible that the differences came from a normally distributed population?

b. The article reported that mean\(( \pm SD) = - 145.3(68.0)\)for ER velocity and\( = - 227.8(96.6)\)for IR velocity. Based just on this information, could a test of hypotheses about the difference between true average IR velocity and true average ER velocity be carried out? Explain.

c. The article stated that " The lead hip peak IR velocity was significantly greater than the trail hip ER velocity\(\;\left( {p = 0.003, t value = 3.65} \right)\). "$ (The phrasing suggests that an upper-tailed test was used.) Is that in fact the case? (Note: "\(p = .033 \)in Table 2 of the article is erroneous.)

The degenerative disease osteoarthritis most frequently affects weight-bearing joints such as the knee. The article "Evidence of Mechanical Load Redistribution at the Knee Joint in the Elderly When Ascending Stairs and Ramps" (Annals of Biomed. Engr., \(2008: 467 - 476\)) presented the following summary data on stance duration (ms) for samples of both older and younger adults.

\(\begin{array}{*{20}{l}}{Age\;\;\;\;\;\;\;Sample Size\;\;Sample Mean\;\;Sample SD}\\{\;Older\;\;\;\;\;28\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;801\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;117}\\{Younger\;16\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;780\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;72}\end{array}\)

Assume that both stance duration distributions are normal.

a. Calculate and interpret a\(99\% \)CI for true average stance duration among elderly individuals.

b. Carry out a test of hypotheses at significance level\(.05\)to decide whether true average stance duration is larger among elderly individuals than among younger individuals.

A study was carried out to compare two different methods, injection and nasal spray, for administering flu vaccine to children under the age of 5. All 8000 children in the study were given both an injection and a spray. However, the vaccine given to 4000 of the children actually contained just saltwater, and the spray given to the other 4000 children also contained just saltwater. At the end of the flu season, it was determined that 3.9% of the children who received the real vaccine via nasal spray contracted the flu, whereas 8.6% of the 4000 children receiving the real vaccine via injection contracted the flu.

(a). Why do you think each child received both an injection and a spray?

(b). Does one method for delivering the vaccine appear to be superior to the other? Test the appropriate hypotheses. [Note: The study was described in the article โ€œSpray Flu Vaccine May Work Better Than Injections for Tots,โ€ San Luis Obispo Tribune, May 2, 2006..

An experiment to compare the tension bond strength of polymer latex modified mortar (Portland cement mortar to which polymer latex emulsions have been added during mixing) to that of unmodified mortar resulted in \(\bar x = 18.12kgf/c{m^2}\)for the modified mortar \((m = 40)\) and \(\bar y = 16.87kgf/c{m^2}\) for the unmodified mortar \((n = 32)\). Let \({\mu _1}\) and \({\mu _2}\) be the true average tension bond strengths for the modified and unmodified mortars, respectively. Assume that the bond strength distributions are both normal.

a. Assuming that \({\sigma _1} = 1.6\) and \({\sigma _2} = 1.4\), test \({H_0}:{\mu _1} - {\mu _2} = 0\) versus \({H_a}:{\mu _1} - {\mu _2} > 0\) at level . \(01.\)

b. Compute the probability of a type II error for the test of part (a) when \({\mu _1} - {\mu _2} = 1\).

c. Suppose the investigator decided to use a level \(.05\) test and wished \(\beta = .10\) when \({\mu _1} - {\mu _2} = 1. \). If \(m = 40\), what value of n is necessary?

d. How would the analysis and conclusion of part (a) change if \({\sigma _1}\) and \({\sigma _2}\) were unknown but \({s_1} = 1.6\)and \({s_7} = 1.4?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free