The random variable (standardized) is given two normal distributions.
\(T = \frac{{\bar X - \bar Y - \left( {{\mu _1} - {\mu _2}} \right)}}{{\sqrt {\frac{{S_1^2}}{m} + \frac{{S_2^2}}{n}} }}\)
has a t distribution for students with degrees of freedom v, where v is.
\(\nu = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}}\)
Has to be rounded down to the nearest integer.
a) \({\rm{m = 10, n = 10, }}{s_1}{\rm{ = 5, }}{s_2}{\rm{ = 6}}\)
The degrees of freedom v can be calculated using the formula above.
\(\begin{array}{l}\nu = \frac{{{{\left( {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} \right)}^2}}}{{\frac{{{{\left( {s_1^2/m} \right)}^2}}}{{m - 1}} + \frac{{{{\left( {s_2^2/n} \right)}^2}}}{{n - 1}}}} = \frac{{{{\left( {\frac{{{5^2}}}{{10}} + \frac{{{6^2}}}{{10}}} \right)}^2}}}{{\frac{{{{\left( {{5^2}/10} \right)}^2}}}{{10 - 1}} + \frac{{{{\left( {{6^2}/10} \right)}^2}}}{{10 - 1}}}}\\ = \frac{{37.21}}{{0.694 + 1.44}} = 17.43,\end{array}\)
The degrees of freedom for the two-sample t test, also known as Cl, are rounded down to the next integer.
\(\nu = 17.\)