Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To decide whether two different types of steel have the same true average fracture toughness values, n specimens of each type are tested, yielding the following results:

\(\begin{array}{l}\underline {\begin{array}{*{20}{c}}{ Type }&{ Sample Average }&{ Sample SD }\\1&{60.1}&{1.0}\\2&{59.9}&{1.0}\\{}&{}&{}\end{array}} \\\end{array}\)

Calculate the P-value for the appropriate two-sample \(z\) test, assuming that the data was based on \(n = 100\). Then repeat the calculation for \(n = 400\). Is the small P-value for \(n = 400\) indicative of a difference that has practical significance? Would you have been satisfied with just a report of the P-value? Comment briefly.a

Short Answer

Expert verified

the solution is

The slight difference in the genuine average has been amplified statistically due to the huge sample size \(n = 400\). In practice, the little difference in sample average values would lead one to believe that there is no difference between them. The P- value would be insufficient - it would be unsatisfactory

Step by step solution

01

calculate p value

when the null hypothesis is

\({H_0}:{\mu _1} - {\mu _2} = {\Delta _0}\)

the test statistic value

\(z = \frac{{(\bar x - \bar y) - {\Delta _0}}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }}\)

The \(P\) value is derived for the acceptable alternative hypothesis by calculating the adequate area under the standard normal curve. When both \(m > 40 and n > 40\), this test can be employed.

The sample size is the same and exceeds \(40(100,400 > 40)\). When \(n = 100\), the value of the test statistic is.

\(z = \frac{{(\bar x - \bar y) - {\Delta _0}}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }} = \frac{{60.1 - 59.9}}{{\sqrt {\frac{1}{{100}} + \frac{1}{{100}}} }} = 1.41.\)

02

calculated phi

the alternative hypothesis is two sided \(\left( {{H_a}:{\mu _1} - {\mu _2} \ne 0} \right)\) the p value

\(\begin{array}{l}2.P(Z > 1.41) = 2 \times (1 - P(Z \le 1.41) = 2.(1 - \Phi (1.41))\\ = 0.1586\end{array}\)

where \(\Phi (1.41)\) was calculated using the appendix table.

When \(n = 400\)

\(z = \frac{{(\bar x - \bar y) - {\Delta _0}}}{{\sqrt {\frac{{s_1^2}}{m} + \frac{{s_2^2}}{n}} }} = \frac{{60.1 - 59.9}}{{\sqrt {\frac{1}{{400}} + \frac{1}{{400}}} }} = 2.83.\)

The alternative hypothesis is two sided \(\left( {{H_a}:{\mu _1} - {\mu _2} \ne 0} \right)\), the \(P\) value is

\(\begin{array}{l}2.P(Z > 2.83) = 2 \times (1 - P(Z \le 2.83) = 2 \times (1 - \Phi (2.83))\\ = 0.0046\end{array}\)

where \(\Phi (2.83)\) was calculated using the appendix table.

The slight difference in the genuine average has been amplified statistically due to the huge sample size \(n = 400\). In practice, the little difference in sample average values would lead one to believe that there is no difference between them. The P- value would be insufficient - it would be unsatisfactory.

03

conclusion

The slight difference in the genuine average has been amplified statistically due to the huge sample size\(n = 400\). In practice, the little difference in sample average values would lead one to believe that there is no difference between them. The P- value would be insufficient - it would be unsatisfactory

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The article "The Influence of Corrosion Inhibitor and Surface Abrasion on the Failure of Aluminum-Wired Twist-On Connections" (IEEE Trans. on Components, Hybrids, and Manuf. Tech., 1984: 20-25) reported data on potential drop measurements for one sample of connectors wired with alloy aluminum and another sample wired with EC aluminum. Does the accompanying SAS output suggest that the true average potential drop for alloy connections (type 1) is higher than that wfor EC connections (as stated in the article)? Carry out the appropriate test using a significance level of .01. In reaching your conclusion, what type of error might you have committed?

(Note: SAS reports the\(P\)-value for a two-tailed test.)

\(\begin{array}{*{20}{c}}{ Type }&{}&N&{ Mean }&{ Std Dev }&{ Std Error }\\1&{20}&{17.49900000}&{0.55012821}&{0.12301241}&{}\\2&{20}&{16.90000000}&{0.48998389}&{0.10956373}&{}\\{}&{ Variances }&T&{ DF }&{Prob > |T|}&{}\\{ Unequal }&{3.6362}&{37.5}&{0.0008}&{}&{}\\{}&{ Equal }&{3.6362}&{38.0}&{0.0008}&{}\end{array}\)

McNemar's test, developed in Exercise 56, can also be used when individuals are paired (matched) to yield n pairs and then one member of each pair is given treatment 1 and the other is given treatment 2 . Then \({X_1}\)is the number of pairs in which both treatments were successful, and similarly for\({H_0}\)\({X_2},{X_3}\), and\({X_4}\). The test statistic for testing equal efficacy of the two treatments is given by\(\left( {{X_2} - {X_3}} \right)/\sqrt {\left( {{X_2} + {X_3}} \right)} \), which has approximately a standard normal distribution when \({H_0}\)is true. Use this to test whether the drug ergotamine is effective in the treatment of migraine headaches.

The data is fictitious, but the conclusion agrees with that in the article "Controlled Clinical Trial of Ergotamine Tartrate" (British Med, J., 1970: 325-327).

Shoveling is not exactly a high-tech activity, but it will continue to be a required task even in our information age. The article "A Shovel with a Perforated Blade Reduces Energy Expenditure Required for Digging Wet Clay" (Human Factors, 2010: 492-502) reported on an experiment in which 13 workers were each provided with both a conventional shovel and a shovel whose blade was perforated with small holes. The authors of the cited article provided the following data on stable energy expenditure ((kcal/kg(subject)//b(clay)):

Worker : 1 2 3 4

Conventional : .0011 .0014 .0018 .0022

Perforated : .0011 .0010 .0019 .0013

Worker: 5 6 7

Conventional : .0010 .0016 .0028

Perforated : .0011 .0017 .0024

Worker 8 9 10

Conventional : .0020 .0015 .0014

Perforated : .0020 .0013 .0013

Worker: 11 12 13

Conventional : .0023 .0017 .0020

Perforated : .0017 .0015 .0013

a. Calculate a confidence interval at the 95 % confidence level for the true average difference between energy expenditure for the conventional shovel and the perforated shovel (the relevant normal probability plot shows a reasonably linear pattern). Based on this interval, does it appear that the shovels differ with respect to true average energy expenditure? Explain.

b. Carry out a test of hypotheses at significance level .05 to see if true average energy expenditure using the conventional shovel exceeds that using the perforated shovel.

Reliance on solid biomass fuel for cooking and heating exposes many children from developing countries to high levels of indoor air pollution. The article โ€œDomestic Fuels, Indoor Air Pollution, and Childrenโ€™s Healthโ€ (Annals of the N.Y. Academy of Sciences, \(2008:209 - 217\)) presented information on various pulmonary characteristics in samples of children whose households in India used either biomass fuel or liquefied petroleum gas (\(LPG\)). For the \(755\) children in biomass households, the sample mean peak expiratory flow (a personโ€™s maximum speed of expiration) was \(3.30L/s\), and the sample standard deviation was \(1.20\). For the \(750\) children whose households used liquefied petroleum gas, the sample mean \(PEF\) was \(4.25\) and the sample standard deviation was \(1.75\).

a. Calculate a confidence interval at the \(95\% \) confidence level for the population mean \(PEF\) for children in biomass households and then do likewise for children in \(LPG\) households. What is the simultaneous confidence level for the two intervals?

b. Carry out a test of hypotheses at significance level \(.01\) to decide whether true average \(PEF\) is lower for children in biomass households than it is for children in \(LPG\) households (the cited article included a P-value for this test)

c. \(FE{V_1}\), the forced expiratory volume in \(1\) second, is another measure of pulmonary function. The cited article reported that for the biomass households the sample mean FEV1 was \(2.3L/s\) and the sample standard deviation was \(.5L/s\). If this information is used to compute a \(95\% \) \(CI\) for population mean \(FE{V_1}\), would the simultaneous confidence level for this interval and the first interval calculated in (a) be the same as the simultaneous confidence level determined there? Explain

1. An article in the November \(1983\) Consumer Reports compared various types of batteries. The average lifetimes of Duracell Alkaline \(AA\)batteries and Eveready Energizer Alkaline \(AA\) batteries were given as \(4.1\) hours and \(4.5\) hours, respectively. Suppose these are the population average lifetimes.

a. Let \(\bar X\) be the sample average lifetime of \(100\) Duracell batteries and \(\bar Y\) be the sample average lifetime of \(100\) Eveready batteries. What is the mean value of \(\bar X - \bar Y\) (i.e., where is the distribution of \({\bf{\bar X - \bar Y}}\) centered)? How does your answer depend on the specified sample sizes?

b. Suppose the population standard deviations of lifetime are \(1.8\) hours for Duracell batteries and \(2.0\) hours for Eveready batteries. With the sample sizes given in part (a), what is the variance of the statistic \(\bar X - \bar Y\), and what is its standard deviation?

c. For the sample sizes given in part (a), draw a picture of the approximate distribution curve of \(\bar X - \bar Y\) (include a measurement scale on the horizontal axis). Would the shape of the curve necessarily be the same for sample sizes of \(10\) batteries of each type? Explain

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free