An unethical experimenter desires to test the following hypotheses:
\(\begin{array}{*{20}{l}}{{{\bf{H}}_{\bf{0}}}{\bf{:}}}&{{\bf{\theta = }}{{\bf{\theta }}_{\bf{0}}}}\\{{{\bf{H}}_{\bf{1}}}{\bf{:}}}&{{\bf{\theta }} \ne {{\bf{\theta }}_{\bf{0}}}}\end{array}\)
She draws a random sample \({{\bf{X}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{X}}_{\bf{n}}}\) from a distribution with the p.d.f. \(f(x\mid \theta )\), and carries out a test of size \(\alpha \). If this test does not reject \({{\bf{H}}_{\bf{0}}}\), she discards the sample, draws a new independent random sample of \(n\)observations, and repeats the test based on the new sample. She continues drawing new independent samples in this way until she obtains a sample for which \({{\bf{H}}_{\bf{0}}}\) is rejected.
a. What is the overall size of this testing procedure?
b. If \({{\bf{H}}_{\bf{0}}}\) is true, what is the expected number of samples that the experimenter will have to draw until she rejects \({{\bf{H}}_{\bf{0}}}\) ?