Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}} \right)\) denote the p.d.f. of the bivariate normaldistribution specified by Eq. (5.10.2). Show that the maximumvalue of \({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}} \right)\) is attained at the point at which \({{\bf{x}}_{\bf{1}}} = {{\bf{\mu }}_{\bf{1}}}{\rm{ }}{\bf{and}}{\rm{ }}{{\bf{x}}_{\bf{2}}} = {{\bf{\mu }}_{\bf{2}}}.\)

Short Answer

Expert verified

The maximum value of \(f\left( {{x_1},{x_2}} \right)\) is attained at the point at which \({x_1} = {\mu _1}{\rm{ }}and{\rm{ }}{x_2} = {\mu _2}.\)

Step by step solution

01

Given information

The given joint pdf of \({X_1}\,\,and\,\,{X_2}\) is;

\(f\left( {{x_1},{x_2}} \right) = \frac{1}{{2\pi {{\left( {1 - p} \right)}^{\frac{1}{2}}}{\sigma _1}{\sigma _2}}}\exp \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}\)

02

Differentiating the pdf with respect to \({{\bf{X}}_{\bf{1}}}\)

To find the maximum value of \(f\left( {{x_1},{x_2}} \right)\)at point \({X_1}\,\,\), one need to differentiate the pdf with respect to \({X_1}\,\,\)

\(\begin{aligned}{}\frac{\partial }{{\partial {x_1}}}\ln f\left( {{x_1},{x_2}} \right) &= \frac{\partial }{{\partial {x_1}}}\ln \left[ {\frac{1}{{2\pi {{\left( {1 - p} \right)}^{\frac{1}{2}}}{\sigma _1}{\sigma _2}}}\exp \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right]\\ &= \frac{\partial }{{\partial {x_1}}}\left( {\ln k + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right)\,\,\,\left( {{\rm{k}}\,\,{\rm{is}}\,\,{\rm{constant}}\,\,{\rm{term}}} \right)\\ &= 0 + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)} \right)} \right\}\end{aligned}\)

Equating it with 0,

\(\begin{aligned}{}\left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)} \right)} \right\} &= 0\\2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right) &= 0\\\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right) &= 0\\{x_1} = {\mu _1}\end{aligned}\)

Therefore, at \({x_1} = {\mu _1}\) the maximum is achieved.

03

Differentiating the pdf with respect to \({{\bf{X}}_{\bf{2}}}\)

To find the maximum value of \(f\left( {{x_1},{x_2}} \right)\)at point \({X_2}\), One need to differentiate the pdf with respect to \({X_2}\)

\(\begin{aligned}{}\frac{\partial }{{\partial {x_2}}}\ln f\left( {{x_1},{x_2}} \right) &= \frac{\partial }{{\partial {x_2}}}\ln \left[ {\frac{1}{{2\pi {{\left( {1 - p} \right)}^{\frac{1}{2}}}{\sigma _1}{\sigma _2}}}\exp \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right]\\& = \frac{\partial }{{\partial {x_2}}}\left( {\ln k + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right)\,\,\,\left( {{\rm{k}}\,\,{\rm{is}}\,\,{\rm{constant}}\,\,{\rm{term}}} \right)\\ &= 0 + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right)} \right\}\end{aligned}\)

Equating it with 0,

\(\begin{aligned}{}\left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right)} \right\} &= 0\\2\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right) &= 0\\\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right) &= 0\\{x_2} = {\mu _2}\end{aligned}\)

Therefore, at \({x_2} = {\mu _2}\) the maximum is achieved

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that the random variables\({X_1},...,{X_k}\)are independent and\({X_i}\)has the exponential distribution with parameter\({\beta _i}\left( {i = 1,...,n} \right)\). Let\(Y = \min \left\{ {{X_{1,...,}}{X_k}} \right\}\)Show that Y has the exponential distribution with parameter\({\beta _1} + .... + {\beta _k}\).

Let \({{\bf{X}}_{{\bf{1,}}}}{\bf{ }}{\bf{. }}{\bf{. }}{\bf{. , }}{{\bf{X}}_{\bf{n}}}\)be i.i.d. random variables having thenormal distribution with mean \({\bf{\mu }}\) and variance\({{\bf{\sigma }}^{\bf{2}}}\). Define\(\overline {{{\bf{X}}_{\bf{n}}}} {\bf{ = }}\frac{{\bf{1}}}{{\bf{n}}}\sum\limits_{{\bf{i = 1}}}^{\bf{n}} {{{\bf{X}}_{\bf{i}}}} \) , the sample mean. In this problem, weshall find the conditional distribution of each \({{\bf{X}}_{\bf{i}}}\)given\(\overline {{{\bf{X}}_{\bf{n}}}} \).

a.Show that \({{\bf{X}}_{\bf{i}}}\)and\(\overline {{{\bf{X}}_{\bf{n}}}} \) have the bivariate normal distributionwith both means \({\bf{\mu }}\), variances\({{\bf{\sigma }}^{\bf{2}}}{\rm{ }}{\bf{and}}\,\,\frac{{{{\bf{\sigma }}^{\bf{2}}}}}{{\bf{n}}}\),and correlation\(\frac{{\bf{1}}}{{\sqrt {\bf{n}} }}\).

Hint: Let\({\bf{Y = }}\sum\limits_{{\bf{j}} \ne {\bf{i}}} {{{\bf{X}}_{\bf{j}}}} \).

Nowshow that Y and \({{\bf{X}}_{\bf{i}}}\) are independent normals and \({{\bf{X}}_{\bf{n}}}\)and \({{\bf{X}}_{\bf{i}}}\) are linear combinations of Y and \({{\bf{X}}_{\bf{i}}}\) .

b.Show that the conditional distribution of \({{\bf{X}}_{\bf{i}}}\) given\(\overline {{{\bf{X}}_{\bf{n}}}} {\bf{ = }}\overline {{{\bf{x}}_{\bf{n}}}} \)\(\) is normal with mean \(\overline {{{\bf{x}}_{\bf{n}}}} \) and variance \({{\bf{\sigma }}^{\bf{2}}}\left( {{\bf{1 - }}\frac{{\bf{1}}}{{\bf{n}}}} \right)\).

Let X and P be random variables. Suppose that the conditional distribution of X given P = p is the binomial distribution with parameters n and p. Suppose that the distribution of P is the beta distribution with parameters

\({\bf{\alpha }} = {\rm{ }}{\bf{1}}{\rm{ }}{\bf{and}}\,\,{\bf{\beta }} = {\rm{ }}{\bf{1}}\). Find the marginal distribution of X.

Suppose that \({X_1}\) and \({X_2}\) have a bivariate normal distribution for which \(E\left( {{X_1}|{X_2}} \right) = 3.7 - 0.15{X_2},\,\,E\left( {{X_2}|{X_1}} \right) = 0.4 - 0.6{X_1}\,\,and\,\,Var\left( {{X_2}|{X_1}} \right) = 3.64\)Find the mean and the variance of\({X_1}\) , the mean and the variance of \({X_2}\), and the correlation of \({X_1}\)and\({X_2}\).

Suppose that X has the beta distribution with parameters ฮฑ and ฮฒ. Show that 1 โˆ’ X has the beta distribution with parameters ฮฒ and ฮฑ.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free