To find the maximum value of \(f\left( {{x_1},{x_2}} \right)\)at point \({X_1}\,\,\), one need to differentiate the pdf with respect to \({X_1}\,\,\)
\(\begin{aligned}{}\frac{\partial }{{\partial {x_1}}}\ln f\left( {{x_1},{x_2}} \right) &= \frac{\partial }{{\partial {x_1}}}\ln \left[ {\frac{1}{{2\pi {{\left( {1 - p} \right)}^{\frac{1}{2}}}{\sigma _1}{\sigma _2}}}\exp \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right]\\ &= \frac{\partial }{{\partial {x_1}}}\left( {\ln k + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left[ {{{\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)}^2} + {{\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)}^2} - 2p\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)\left( {\frac{{{x_2} - {\mu _2}}}{{{\sigma _2}}}} \right)} \right]} \right\}} \right)\,\,\,\left( {{\rm{k}}\,\,{\rm{is}}\,\,{\rm{constant}}\,\,{\rm{term}}} \right)\\ &= 0 + \left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)} \right)} \right\}\end{aligned}\)
Equating it with 0,
\(\begin{aligned}{}\left\{ {\frac{{ - 1}}{{2\left( {1 - {p^2}} \right)}}\left( {2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right)} \right)} \right\} &= 0\\2\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right) &= 0\\\left( {\frac{{{x_1} - {\mu _1}}}{{{\sigma _1}}}} \right) &= 0\\{x_1} = {\mu _1}\end{aligned}\)
Therefore, at \({x_1} = {\mu _1}\) the maximum is achieved.