Since X follows a normal distribution, the odd-order moments of X are 0.
Therefore,
\(\begin{array}{l}E\left( {{{\left( {X - \mu } \right)}^3}} \right) = 0\\E\left( {{X^3} - 3{X^2}\mu + 3{\mu ^2}X - {\mu ^3}} \right) = 0\end{array}\)
Using this derivation,
\(\begin{aligned}{}E\left( {{X^3}} \right) &= 3\mu E\left( {{X^2}} \right) - 3{\mu ^2}E\left( X \right) + {\mu ^3}\\ &= 3\mu \left( {{\mu ^2} + {\sigma ^2}} \right) - 3{\mu ^2} \times \mu + {\mu ^3} \ldots {\rm{From}}\,\,\left( {{\rm{1}}\,} \right)\,\,{\rm{and}}\,\,\left( {\rm{2}} \right)\\& = 3{\mu ^3} + 3\mu {\sigma ^2} - 3{\mu ^3} + {\mu ^3}\\& = \mu \left( {3{\sigma ^2} + {\mu ^2}} \right)\\ &= 3\mu {\sigma ^2} + {\mu ^3}\end{aligned}\)
Hence the final answer is\(3\mu {\sigma ^2} + {\mu ^3}\).