Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the random variables \({{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{k}}}\) are independent and that \({{\bf{X}}_{\bf{i}}}\) has the Poisson distribution with mean \({{\bf{\lambda }}_{\bf{i}}}\left( {{\bf{i = 1, \ldots ,k}}} \right)\). Show that for each fixed positive integer n, the conditional distribution of the random Vector \({\bf{X = }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{k}}}} \right)\), given that \(\sum\limits_{{\bf{i = 1}}}^{\bf{k}} {{{\bf{X}}_{\bf{i}}}{\bf{ = n}}} \) it is the multinomial distribution with parameters n and

\(\begin{array}{l}{\bf{p = }}\left( {{{\bf{p}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{p}}_{\bf{k}}}} \right){\bf{,}}\,{\bf{where}}\\{{\bf{p}}_{\bf{i}}}{\bf{ = }}\frac{{{{\bf{\lambda }}_{\bf{i}}}}}{{\sum\limits_{{\bf{j = 1}}}^{\bf{k}} {{{\bf{\lambda }}_{\bf{j}}}} }}\,{\bf{for}}\,{\bf{i = 1, \ldots ,k}}{\bf{.}}\end{array}\)

Short Answer

Expert verified

The proof has been established

Step by step solution

01

Given information

It is given that \({X_1} \ldots {X_k}\)it follows a Poisson distribution with parameters \({\lambda _i}\left( {i = 1, \ldots ,k} \right)\) respectively.

02

The proof

\(\begin{array}{l} = P\left[ {{X_1} \cap \ldots \cap {X_k}|\sum\limits_{i = 1}^k {{X_i} = n} } \right]\\ = \frac{{P\left[ {{X_1} = {r_1} \cap \ldots \cap {X_k} = {r_k} \cap \sum\limits_{i = 1}^k {{X_i} = n} } \right]}}{{P\left( {\sum\limits_{i = 1}^k {{X_i} = n} } \right)}}\\\frac{{ = \left( {{X_1} = {r_1} \cap \ldots \cap {X_k} = n - {r_1} - \ldots - {r_{k - 1}}} \right)}}{{P\left( {\sum\limits_{i = 1}^k {{X_i} = n} } \right)}}\\ = \frac{{P\left( {{X_1} = {r_1}} \right) \ldots P\left( {{X_k} = n - {r_1} - \ldots - {r_{k - 1}}} \right)}}{{P\left( {\sum\limits_{i = 1}^k {{X_i} = n} } \right)}},\,\,{\rm{Since}}\,{{\rm{X}}_{\rm{i}}}\,\,{\rm{are}}\,\,{\rm{independent}}\end{array}\)

Further, since \({X_1} \ldots {X_k}\) they are independent, Poisson variates with parameters \({\lambda _i}\left( {i = 1, \ldots ,k} \right)\) \(X = \sum\limits_{i = 1}^k {{X_i}} \) is also a Poisson variate with parameters \(\lambda = \sum\limits_{i = 1}^k {{\lambda _i}} \).

Now,

\(\begin{array}{l} = \frac{{\frac{{{e^{ - {\lambda _1}}}{\lambda _1}^{{r_1}}}}{{{r_1}!}} \ldots \frac{{{e^{ - {\lambda _k}}}{\lambda _k}^{{r_{n - {r_1} - \ldots - {r_{k - 1}}}}}}}{{\left( {n - {r_1} - \ldots - {r_{k - 1}}} \right)!}}}}{{\frac{{{e^{ - \lambda }}{\lambda ^r}}}{{r!}}}}\\ = \left\{ {\frac{{n!}}{{{r_1}! \ldots \left( {n - {r_1} - \ldots - {r_{k - 1}}} \right)!}}} \right\}\left\{ {{{\left( {\frac{{{\lambda _1}}}{\lambda }} \right)}^{{r_1}}} \ldots {{\left( {\frac{{{\lambda _k}}}{\lambda }} \right)}^{n - {r_1} - \ldots - {r_{k - 1}}}}} \right\}\\ = \frac{{n!}}{{{r_1}! \ldots {r_k}!}}p_1^{{r_1}} \ldots p_k^{{r_k}}\\Where,\,\\\sum\limits_{i = 1}^k {{r_i} = n\,\,and\,\,\sum\limits_{i = 1}^k {{p_i} = \sum\limits_{i = 1}^k {\left( {\frac{{{\lambda _i}}}{\lambda }} \right)} } } = \frac{1}{\lambda }\sum\limits_{i = 1}^k {\left( {{\lambda _i}} \right) = 1} \end{array}\)

Therefore, the conditional distribution of the random Vector\({\bf{X = }}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{X}}_{\bf{k}}}} \right)\), given that \(\sum\limits_{{\bf{i = 1}}}^{\bf{k}} {{{\bf{X}}_{\bf{i}}}{\bf{ = n}}} \)it is the multinomial distribution with parameters n and

\(\begin{array}{l}{\bf{p = }}\left( {{{\bf{p}}_{\bf{1}}}{\bf{ \ldots }}{{\bf{p}}_{\bf{k}}}} \right){\bf{,}}\,{\bf{where}}\\{{\bf{p}}_{\bf{i}}}{\bf{ = }}\frac{{{{\bf{\lambda }}_{\bf{i}}}}}{{\sum\limits_{{\bf{j = 1}}}^{\bf{k}} {{{\bf{\lambda }}_{\bf{j}}}} }}\,{\bf{for}}\,{\bf{i = 1, \ldots ,k}}{\bf{.}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that a box contains five red balls and ten blue balls. If seven balls are selected randomly without replacement, what is the probability that at least three red balls will be obtained?

Suppose that X has a normal distribution such that \({\bf{Pr}}\left( {{\bf{X < 116}}} \right){\bf{ = 0}}{\bf{.20}}\,\,{\bf{and}}\,\,{\bf{Pr}}\left( {{\bf{X < 328}}} \right){\bf{ = 0}}{\bf{.90}}\,\)Determine X's mean and variance.

Let F be a continuous CDF satisfying F (0) = 0, and suppose that the distribution with CDF F has the memoryless property (5.7.18). Define f(x) = log[1 โˆ’ F (x)] for x > 0

a. Show that for all t, h > 0,

\({\bf{1 - F}}\left( {\bf{h}} \right){\bf{ = }}\frac{{{\bf{1 - F}}\left( {{\bf{t + h}}} \right)}}{{{\bf{1 - F}}\left( {\bf{t}} \right)}}\)

b. Prove that \(\ell \)(t + h) = \(\ell \)(t) + \(\ell \)(h) for all t, h > 0.

c. Prove that for all t > 0 and all positive integers k and m, \(\ell \)(kt/m) = (k/m)\(\ell \) (t).

d. Prove that for all t, c > 0, \(\ell \) (ct) = c\(\ell \) (t).

e. Prove that g(t) = \(\ell \) (t)/t is constant for t > 0

f. Prove that F must be the CDF of an exponential distribution.

Consider the Poisson process of radioactive particle hits in Example 5.7.8. Suppose that the rate ฮฒ of the Poisson process is unknown and has the gamma distribution with parameters ฮฑ and ฮณ. LetX be the number of particles that strike the target during t time units. Prove that the conditional distribution of ฮฒ given X = x is a gamma distribution, and find the parameters of that gamma distribution.

Sketch the p.d.f. of the beta distribution for each of the following pairs of values of the parameters:

a. ฮฑ = 1/2 and ฮฒ = 1/2

b. ฮฑ = 1/2 and ฮฒ = 1

c. ฮฑ = 1/2 and ฮฒ = 2

d. ฮฑ = 1 and ฮฒ = 1

e. ฮฑ = 1 and ฮฒ = 2

f. ฮฑ = 2 and ฮฒ = 2

g. ฮฑ = 25 and ฮฒ = 100

h. ฮฑ = 100 and ฮฒ = 25

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free