The expectation and variance of
\(\begin{aligned}{}{X_i}\,for\,i& = 1,2, \ldots ,k\\E\left( {{X_i}} \right) &= n{p_i} \ldots \left( 1 \right)\\Var\left( {{X_i}} \right) &= n{p_i}\left( {1 - {p_i}} \right) \ldots \left( 2 \right)\\Cov\left( {{X_i},{X_j}} \right)& = - n{p_i}{p_j} \ldots \left( 3 \right)\end{aligned}\)
Note that covariance between any pair of \(\left( {{X_i},{X_j}} \right)\) when \(i = 1,2, \ldots ,k\,and\,i \ne j\)
Now,
\(\begin{aligned}{}E\left( {{X_3} - {X_4}} \right) &= E\left( {{X_3}} \right) - E\left( {{X_4}} \right)\\ &= n \times {p_3} - n \times {p_4}\\& = 15 \times \left( {0.38 - 0.32} \right)\\ &= 0.9\end{aligned}\)
\(\begin{aligned}{}Var\left( {{X_3} - {X_4}} \right) &= Var\left( {{X_3}} \right) + Var\left( {{X_4}} \right) - 2{\mathop{\rm cov}} \left[ {{X_3},{X_4}} \right]\\& = n \times {p_3} \times \left( {1 - {p_3}} \right) - n \times {p_4} \times \left( {1 - {p_4}} \right) - \left( { - n \times {p_3} \times {p_4}} \right)\\ &= 15 \times 0.38 \times \left( {1 - 0.38} \right) + 15 \times 0.32 \times \left( {1 - 0.32} \right) - 2 \times \left( { - 15 \times 0.38 \times 0.32} \right)\\ &= 015 \times 0.38 \times 0.62 + 15 \times 0.32 \times 0.68 - 2 \times \left( { - 1.824} \right)\\ &= 3.5340 - 3.2640 - 2 \times \left( { - 1.824} \right)\\& = 10.4460\end{aligned}\)
Therefore,
\(\begin{aligned}{}E\left( {{X_3} - {X_4}} \right) &= 0.9\\Var\left( {{X_3} - {X_4}} \right) &= 10.4460\end{aligned}\)