Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercise 5, let \({{\bf{X}}_{\bf{3}}}\) denote the number of juniors in the random sample of 15 students and the number of seniors in the sample. Find the value of \({\bf{E}}\left( {{{\bf{X}}_{\bf{3}}} - {{\bf{X}}_{\bf{4}}}} \right)\) and the value of \({\bf{Var}}\left( {{{\bf{X}}_{\bf{3}}} - {{\bf{X}}_{\bf{4}}}} \right)\)

Short Answer

Expert verified

\(\begin{array}{c}E\left( {{X_3} - {X_4}} \right) = 0.9\\Var\left( {{X_3} - {X_4}} \right) = 10.4460\end{array}\)

Step by step solution

01

Given information

It \({X_3}\)denotes the number of juniors in a random sample of 15 students.

Similarly, \({X_3}\)denotes the number of seniors in a random sample of 15 students.

02

Adding previous data

It is given that

\(\begin{array}{l}{p_1} = 0.16\\{p_2} = 0.14\\{p_3} = 0.38\\{p_4} = 0.32\end{array}\)

Which denotes the percent of students in freshman, sophomores, juniors, and seniors, respectively. Let the respective number of students be denoted by \({x_1},{x_2},{x_3}\,and\,{x_4}\).

In this case, n=15

03

Defining the pdf

This is a case of a multinomial distribution.

The pdf of a standard multinomial distribution is:

\(\)\(f\left( {x|n,p} \right) = \left\{ \begin{array}{l}\frac{{n!}}{{{x_1}! \ldots {x_n}!}}{p_1}^{{x_1}} \ldots {p_k}^{{x_k}},if\,{x_1} + \ldots + {x_k} = n\\0,otherwise\end{array} \right.\)

\(\frac{{15!}}{{{x_1}!{x_2}!{x_3}!{x_4}!}}{\left( {0.16} \right)^{{x_1}}}{\left( {0.14} \right)^{{x_2}}}{\left( {0.38} \right)^{{x_3}}}{\left( {0.32} \right)^{{x_4}}}\)

By comparing with multinomial,

\({X_i} \sim Multinomial\left( {n = 15,{p_i}} \right),\,\,i = 1,2,3,4\)

04

Finding the required values

The expectation and variance of

\(\begin{aligned}{}{X_i}\,for\,i& = 1,2, \ldots ,k\\E\left( {{X_i}} \right) &= n{p_i} \ldots \left( 1 \right)\\Var\left( {{X_i}} \right) &= n{p_i}\left( {1 - {p_i}} \right) \ldots \left( 2 \right)\\Cov\left( {{X_i},{X_j}} \right)& = - n{p_i}{p_j} \ldots \left( 3 \right)\end{aligned}\)

Note that covariance between any pair of \(\left( {{X_i},{X_j}} \right)\) when \(i = 1,2, \ldots ,k\,and\,i \ne j\)

Now,

\(\begin{aligned}{}E\left( {{X_3} - {X_4}} \right) &= E\left( {{X_3}} \right) - E\left( {{X_4}} \right)\\ &= n \times {p_3} - n \times {p_4}\\& = 15 \times \left( {0.38 - 0.32} \right)\\ &= 0.9\end{aligned}\)

\(\begin{aligned}{}Var\left( {{X_3} - {X_4}} \right) &= Var\left( {{X_3}} \right) + Var\left( {{X_4}} \right) - 2{\mathop{\rm cov}} \left[ {{X_3},{X_4}} \right]\\& = n \times {p_3} \times \left( {1 - {p_3}} \right) - n \times {p_4} \times \left( {1 - {p_4}} \right) - \left( { - n \times {p_3} \times {p_4}} \right)\\ &= 15 \times 0.38 \times \left( {1 - 0.38} \right) + 15 \times 0.32 \times \left( {1 - 0.32} \right) - 2 \times \left( { - 15 \times 0.38 \times 0.32} \right)\\ &= 015 \times 0.38 \times 0.62 + 15 \times 0.32 \times 0.68 - 2 \times \left( { - 1.824} \right)\\ &= 3.5340 - 3.2640 - 2 \times \left( { - 1.824} \right)\\& = 10.4460\end{aligned}\)

Therefore,

\(\begin{aligned}{}E\left( {{X_3} - {X_4}} \right) &= 0.9\\Var\left( {{X_3} - {X_4}} \right) &= 10.4460\end{aligned}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free