We have to calculate the probability that at least eight will be either freshmen or sophomores.
1) \(P\left( {{X_1} > 8} \right)\)
Therefore, we combine sophomore, junior and senior probabilities in one.
\(\begin{array}{l} = \frac{{15!}}{{{x_1}!{x_2}!}}{\left( {0.16} \right)^{{x_1}}}{\left( {0.84} \right)^{{x_2}}}\\ = \frac{{15!}}{{8!7!}}{\left( {0.16} \right)^8}{\left( {0.84} \right)^7} + \frac{{15!}}{{9!6!}}{\left( {0.16} \right)^9}{\left( {0.84} \right)^6} + \frac{{15!}}{{10!5!}}{\left( {0.16} \right)^{10}}{\left( {0.84} \right)^5} + \ldots + \frac{{15!}}{{15!}}{\left( {0.16} \right)^{15}}\\\left( 1 \right)\end{array}\)
2) Similarly, \(P\left( {{X_2} > 8} \right)\)
Therefore, we combine freshman, junior and senior probabilities in one.
\(\begin{array}{l} = \frac{{15!}}{{{x_2}!{x_1}!}}{\left( {0.14} \right)^{{x_2}}}{\left( {0.86} \right)^{{x_1}}}\\ = \frac{{15!}}{{8!7!}}{\left( {0.14} \right)^8}{\left( {0.86} \right)^7} + \frac{{15!}}{{9!6!}}{\left( {0.14} \right)^9}{\left( {0.86} \right)^6} + \frac{{15!}}{{10!5!}}{\left( {0.14} \right)^{10}}{\left( {0.86} \right)^5} + \ldots + \frac{{15!}}{{15!}}{\left( {0.14} \right)^{15}}\\\left( 2 \right)\end{array}\)
Note, here \({x_1}\,\)is the combined probability of all except sophomores.
Adding (1) and (2)
0.0501
The final answer is 0.0501