Chapter 5: Q4E (page 337)
Suppose that a die is loaded so that each of the numbers 1, 2, 3, 4, 5, and 6 has a different probability of appearing when the die is rolled. For\({\bf{i = 1, \ldots ,6,}}\)let\({{\bf{p}}_{\bf{i}}}\)denote the probability that the number i will be obtained, and
suppose that\({{\bf{p}}_{\bf{1}}}{\bf{ = 0}}{\bf{.11,}}\,\,{{\bf{p}}_{\bf{2}}}{\bf{ = 0}}{\bf{.30,}}\,\,{{\bf{p}}_{\bf{3}}}{\bf{ = 0}}{\bf{.22,}}\,\,{{\bf{p}}_{\bf{4}}}{\bf{ = 0}}{\bf{.05,}}\,\,{{\bf{p}}_{\bf{5}}}{\bf{ = 0}}{\bf{.25}}\,\,{\bf{and}}\,{{\bf{p}}_{\bf{6}}}{\bf{ = 0}}{\bf{.07}}{\bf{.}}\)Suppose also that the die is to be rolled 40 times. Let\({{\bf{X}}_{\bf{1}}}\)denote the number of rolls for which an even number appears, and let\({{\bf{X}}_2}\)denote the number of rolls for which either the number 1 or the number 3 appears. Find the value of\({\bf{Pr}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ = 20}}\,\,{\bf{and}}\,\,{{\bf{X}}_{\bf{2}}}{\bf{ = 15}}} \right)\).
Short Answer
\(8.0727 \times {10^{ - 3}}\)