Let \(Z = \frac{{\left( {X - 1} \right)}}{2}\)
Then Z has the standard normal distribution.
\({\rm P}\left( {X \le 3} \right) = {\rm P}\left( {Z \le 1} \right)\)
\(\begin{array}{c}{\rm P}\left( {X \le 3} \right) = \phi \left( 1 \right)\\ = 0.8413\end{array}\)
Value of\({\rm P}\left( {X \le 3} \right)\)is 0.8413
b.
\({\rm P}\left( {X > 1.5} \right) = {\rm P}\left( {Z > 0.25} \right)\)
\(\begin{array}{c}{\rm P}\left( {X > 1.5} \right) = 1 - \phi \left( {0.25} \right)\\ = 0.4013\end{array}\)
Value of\({\rm P}\left( {X > 1.5} \right)\)is 0.4013
c.
\({\rm P}\left( {X = 1} \right) = 0\)
Because X has a continuous distribution.
d.
\({\rm P}\left( {2 < X < 5} \right) = {\rm P}\left( {0.5 < Z < 2} \right)\)
\({\rm P}\left( {2 < X < 5} \right) = \phi \left( 2 \right) - \phi \left( {0.5} \right)\)
\({\rm P}\left( {2 < X < 5} \right) = 0.2858\)
Hence the value of\({\rm P}\left( {2 < X < 5} \right)\)is\(0.2858\)
e.
\(\begin{array}{c}{\rm P}\left( {X \ge 0} \right) = {\rm P}\left( {Z \ge - 0.5} \right)\\ = {\rm P}\left( {Z \le - 0.5} \right)\end{array}\)
\(\begin{array}{c}{\rm P}\left( {X \ge 0} \right) = \phi \left( {0.5} \right)\\ = 0.6915\end{array}\)
Hence ,\({\rm P}\left( {X \ge 0} \right)\)is 0.6915
f.
\[\begin{array}{c}{\rm P}\left( { - 1 < X < 0.5} \right) = {\rm P}\left( { - 1 < Z < - 0.25} \right)\\ = {\rm P}\left( { - 1 < Z < - 0.25} \right)\end{array}\]
\[\begin{array}{c}{\rm P}\left( { - 1 < X < 0.5} \right) = \phi \left( 1 \right) - \phi \left( {0.25} \right)\\ = 0.2426\end{array}\]
Hence the Value of P( -1 <X< 0.5) is 0.2426.
g.
\(\begin{array}{c}{\rm P}\left( {\left| X \right| \le 2} \right) = {\rm P}\left( { - 2 \le X \le 2} \right)\\ = {\rm P}\left( { - 1.5 \le Z \le 0.5} \right)\end{array}\)
\(\begin{array}{c}{\rm P}\left( {\left| X \right| \le 2} \right) = {\rm P}\left( {Z \le 0.5} \right) - {\rm P}\left( {Z \le 1.5} \right)\\ = {\rm P}\left( {Z \le 1.5} \right) - {\rm P}\left( {Z \ge 0.5} \right)\\ = \phi \left( {0.5} \right) - \left[ {1 - \phi \left( {1.5} \right)} \right]\end{array}\)
\({\rm P}\left( {\left| X \right| \le 2} \right) = 0.6247\)
Hence,\({\rm P}\left( {\left| X \right| \le 2} \right)\)is 0.6247
h.
\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = {\rm P}\left( { - 2 \le - 2X \le 5} \right)\\ = {\rm P}\left( { - 2.5 \le X \le 1} \right)\end{array}\)
\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = {\rm P}\left( { - 1.75 \le Z < 0} \right)\\ = {\rm P}\left( {0 \le Z < 1.75} \right)\end{array}\)
\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = \phi \left( {1.75} \right) - \phi \left( 0 \right)\\ = 0.4599\end{array}\)
Hence \({\rm P}\left( {1 \le - 2X + 3 \le 8} \right)\)is 0.4599.