Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that X has the normal distribution for which the mean is 1 and the variance is 4. Find the value of each of the following probabilities:

(a). \({\rm P}\left( {X \le 3} \right)\)

(b). \({\rm P}\left( {X > 1.5} \right)\)

(c). \({\rm P}\left( {X = 1} \right)\)

(d). \({\rm P}\left( {2 < X < 5} \right)\)

(e). \({\rm P}\left( {X \ge 0} \right)\)

(f). \({\rm P}\left( { - 1 < X < 0.5} \right)\)

(g). \({\rm P}\left( {\left| X \right| \le 2} \right)\)

(h). \({\rm P}\left( {1 \le - 2X + 3 \le 8} \right)\)

Short Answer

Expert verified

(a). Value of \({\rm P}\left( {X \le 3} \right)\) is 0.8413

(b). Value of \({\rm P}\left( {X > 1.5} \right)\) is 0.4013

(c). Value of \({\rm P}\left( {X = 1} \right) = 0\)

(d). Value of \({\rm P}\left( {2 < X < 5} \right)\)is \(0.2858\)

(e). Value of \({\rm P}\left( {X \ge 0} \right)\)is 0.6915

(f). Value ofP( -1 <X< 0.5) is 0.2426.

(g). Value of \({\rm P}\left( {\left| X \right| \le 2} \right)\)is 0.6247

(h). Value of \({\rm P}\left( {1 \le - 2X + 3 \le 8} \right)\)is 0.4599

Step by step solution

01

Given information.

X as the normal distribution with mean 1 and variance 4

02

Computing the probability.

Let \(Z = \frac{{\left( {X - 1} \right)}}{2}\)

Then Z has the standard normal distribution.

\({\rm P}\left( {X \le 3} \right) = {\rm P}\left( {Z \le 1} \right)\)

\(\begin{array}{c}{\rm P}\left( {X \le 3} \right) = \phi \left( 1 \right)\\ = 0.8413\end{array}\)

Value of\({\rm P}\left( {X \le 3} \right)\)is 0.8413

b.

\({\rm P}\left( {X > 1.5} \right) = {\rm P}\left( {Z > 0.25} \right)\)

\(\begin{array}{c}{\rm P}\left( {X > 1.5} \right) = 1 - \phi \left( {0.25} \right)\\ = 0.4013\end{array}\)

Value of\({\rm P}\left( {X > 1.5} \right)\)is 0.4013

c.

\({\rm P}\left( {X = 1} \right) = 0\)

Because X has a continuous distribution.

d.

\({\rm P}\left( {2 < X < 5} \right) = {\rm P}\left( {0.5 < Z < 2} \right)\)

\({\rm P}\left( {2 < X < 5} \right) = \phi \left( 2 \right) - \phi \left( {0.5} \right)\)

\({\rm P}\left( {2 < X < 5} \right) = 0.2858\)

Hence the value of\({\rm P}\left( {2 < X < 5} \right)\)is\(0.2858\)

e.

\(\begin{array}{c}{\rm P}\left( {X \ge 0} \right) = {\rm P}\left( {Z \ge - 0.5} \right)\\ = {\rm P}\left( {Z \le - 0.5} \right)\end{array}\)

\(\begin{array}{c}{\rm P}\left( {X \ge 0} \right) = \phi \left( {0.5} \right)\\ = 0.6915\end{array}\)

Hence ,\({\rm P}\left( {X \ge 0} \right)\)is 0.6915

f.

\[\begin{array}{c}{\rm P}\left( { - 1 < X < 0.5} \right) = {\rm P}\left( { - 1 < Z < - 0.25} \right)\\ = {\rm P}\left( { - 1 < Z < - 0.25} \right)\end{array}\]

\[\begin{array}{c}{\rm P}\left( { - 1 < X < 0.5} \right) = \phi \left( 1 \right) - \phi \left( {0.25} \right)\\ = 0.2426\end{array}\]

Hence the Value of P( -1 <X< 0.5) is 0.2426.

g.

\(\begin{array}{c}{\rm P}\left( {\left| X \right| \le 2} \right) = {\rm P}\left( { - 2 \le X \le 2} \right)\\ = {\rm P}\left( { - 1.5 \le Z \le 0.5} \right)\end{array}\)

\(\begin{array}{c}{\rm P}\left( {\left| X \right| \le 2} \right) = {\rm P}\left( {Z \le 0.5} \right) - {\rm P}\left( {Z \le 1.5} \right)\\ = {\rm P}\left( {Z \le 1.5} \right) - {\rm P}\left( {Z \ge 0.5} \right)\\ = \phi \left( {0.5} \right) - \left[ {1 - \phi \left( {1.5} \right)} \right]\end{array}\)

\({\rm P}\left( {\left| X \right| \le 2} \right) = 0.6247\)

Hence,\({\rm P}\left( {\left| X \right| \le 2} \right)\)is 0.6247

h.

\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = {\rm P}\left( { - 2 \le - 2X \le 5} \right)\\ = {\rm P}\left( { - 2.5 \le X \le 1} \right)\end{array}\)

\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = {\rm P}\left( { - 1.75 \le Z < 0} \right)\\ = {\rm P}\left( {0 \le Z < 1.75} \right)\end{array}\)

\(\begin{array}{c}{\rm P}\left( {1 \le - 2X + 3 \le 8} \right) = \phi \left( {1.75} \right) - \phi \left( 0 \right)\\ = 0.4599\end{array}\)

Hence \({\rm P}\left( {1 \le - 2X + 3 \le 8} \right)\)is 0.4599.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}} \right)\) denote the p.d.f. of the bivariate normaldistribution specified by Eq. (5.10.2). Show that the maximumvalue of \({\bf{f}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}} \right)\) is attained at the point at which \({{\bf{x}}_{\bf{1}}} = {{\bf{\mu }}_{\bf{1}}}{\rm{ }}{\bf{and}}{\rm{ }}{{\bf{x}}_{\bf{2}}} = {{\bf{\mu }}_{\bf{2}}}.\)

Suppose that a sequence of independent tosses is made with a coin for which the probability of obtaining a head-on each given toss is \(\frac{{\bf{1}}}{{{\bf{30}}}}.\)

a. What is the expected number of tails that will be obtained before five heads have been obtained?

b. What is the variance of the number of tails that will be obtained before five heads have been obtained?

Suppose that a die is loaded so that each of the numbers 1, 2, 3, 4, 5, and 6 has a different probability of appearing when the die is rolled. For\({\bf{i = 1, \ldots ,6,}}\)let\({{\bf{p}}_{\bf{i}}}\)denote the probability that the number i will be obtained, and

suppose that\({{\bf{p}}_{\bf{1}}}{\bf{ = 0}}{\bf{.11,}}\,\,{{\bf{p}}_{\bf{2}}}{\bf{ = 0}}{\bf{.30,}}\,\,{{\bf{p}}_{\bf{3}}}{\bf{ = 0}}{\bf{.22,}}\,\,{{\bf{p}}_{\bf{4}}}{\bf{ = 0}}{\bf{.05,}}\,\,{{\bf{p}}_{\bf{5}}}{\bf{ = 0}}{\bf{.25}}\,\,{\bf{and}}\,{{\bf{p}}_{\bf{6}}}{\bf{ = 0}}{\bf{.07}}{\bf{.}}\)Suppose also that the die is to be rolled 40 times. Let\({{\bf{X}}_{\bf{1}}}\)denote the number of rolls for which an even number appears, and let\({{\bf{X}}_2}\)denote the number of rolls for which either the number 1 or the number 3 appears. Find the value of\({\bf{Pr}}\left( {{{\bf{X}}_{\bf{1}}}{\bf{ = 20}}\,\,{\bf{and}}\,\,{{\bf{X}}_{\bf{2}}}{\bf{ = 15}}} \right)\).

Review the derivation of the Black-Scholes formula (5.6.18). For this exercise, assume that our stock price at time u in the future is

\({{\bf{S}}_{\bf{0}}}{{\bf{e}}^{{\bf{\mu u + }}{{\bf{W}}_{\bf{u}}}}}\)where \({{\bf{W}}_{\bf{u}}}\) has the gamma distribution with parameters ฮฑu and ฮฒ with ฮฒ > 1. Let r be the risk-free interest rate.

a. Prove that \({{\bf{e}}^{{\bf{ - ru}}}}{\bf{E}}\left( {{{\bf{S}}_{\bf{u}}}} \right){\bf{ = }}{{\bf{S}}_{\bf{0}}}\,\,{\bf{if }}\,{\bf{and}}\,\,{\bf{only}}\,\,{\bf{if}}\,{\bf{\mu = r - \alpha log}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right)\)

b. Assume that \({\bf{\mu = r - \alpha log}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right)\). Let R be 1 minus the c.d.f. of the gamma distribution with parameters ฮฑu and 1. Prove that the risk-neutral price for the option to buy one share of the stock for the priceq at the time u is \(\begin{array}{l}{{\bf{S}}_{\bf{0}}}{\bf{R}}\left( {{\bf{c}}\left[ {{\bf{\beta - 1}}} \right]} \right){\bf{ - q}}{{\bf{e}}^{{\bf{ - ru}}}}{\bf{R}}\left( {{\bf{c\beta }}} \right)\,\,{\bf{where}}\\{\bf{c = log}}\left( {\frac{{\bf{q}}}{{{{\bf{S}}_{\bf{0}}}}}} \right){\bf{ + \alpha ulog}}\left( {\frac{{\bf{\beta }}}{{{\bf{\beta - 1}}}}} \right){\bf{ - ru}}\end{array}\)

c. Find the price for the option being considered when u = 1, q = \({{\bf{S}}_{\bf{0}}}\), r = 0.06, ฮฑ = 1, and ฮฒ = 10.

LetXandYbe independent random variables suchthat log(X)has the normal distribution with mean 1.6 andvariance 4.5 and log(Y )has the normal distribution withmean 3 and variance 6. Find the distribution of the productXY.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free